岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 401-413.doi: 10.16285/j.rsm.2021.0258

• 岩土工程研究 • 上一篇    下一篇

高速铁路采空区地基“活化”分级方法及工程应用

任连伟1, 2,宁浩1, 2,顿志林1, 2,刘德华1, 2,杨文府3   

  1. 1. 河南理工大学 土木工程学院,河南 焦作 454000;2. 河南省采空区场地生态修复与建设技术工程研究中心,河南 焦作 454000; 3. 山西省煤炭地质物探测绘院,山西 晋中 030600
  • 收稿日期:2021-02-18 修回日期:2021-04-12 出版日期:2022-10-10 发布日期:2022-10-09
  • 通讯作者: 顿志林,男,1964年生,硕士,教授,主要从事矿井建设与采空区场地建设技术研究。E-mail: dzl1964@163.com E-mail:renhpu@163.com
  • 作者简介:任连伟,男,1980年生,博士,副教授,主要从事采空区场地建设技术研究。
  • 基金资助:
    国家自然科学基金资助项目(No.U1810203)

“Activation” classification method and its engineering application of high-speed railway subgrade in goaf area

REN Lian-wei1, 2, NING Hao1, 2, DUN Zhi-lin1, 2, LIU De-hua1, 2, YANG Wen-fu3   

  1. 1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. Henan Engineering Research Center for Ecological Restoration and Construction Technology of Goaf Sites, Jiaozuo, Henan 454000, China; 3. Coal Geological Geophysical Exploration Surveying & Mapping Institute of Shanxi Province, Jinzhong, Shanxi 030600, China
  • Received:2021-02-18 Revised:2021-04-12 Online:2022-10-10 Published:2022-10-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(U1810203).

摘要: 随着我国高速铁路的快速发展,一些关键线路难免会穿越采空区场地,因此对于高速铁路选线等系列问题,采空区地基“活化”分级需要率先解决。以太焦高速铁路 DK259+135.95−DK259+710.00 线路段的下伏采空区为例,运用层次分析法和模糊数学的基本原理建立了高速铁路采空区地基“活化”分级评判模型。首先确定了影响高速铁路采空区地基“活化”分级的5个大因素、19个因子,在此基础上提出了高速铁路采空区地基“活化”分级因素影响度的划分标准,并组合各因素影响度,提出了相对应的高速铁路采空区地基“活化”分级标准;采用层次分析法确定了影响因素及评价因子的权重,并通过德菲尔法、模糊统计和隶属函数相结合得出了评价因子的隶属度;同时初步分析了高速铁路采空区地基“活化”分级的典型特征;最后运用模糊综合评价法对该段采空区地基进行了“活化”分级,并确定了该段采空区地基为“必活化”。该模型的分级结论符合现场的实际工况,并为后期该段采空区地基采用注浆法治理提供了理论依据。该段采空区地基注浆治理后,又对其进行了二次“活化”分级,确定了注浆治理后的高速铁路采空区地基为“不活化”,这为太焦高速铁路安全运营提供了一种科学、合理的新论证。

关键词: 高速铁路, 采空区地基, “活化”分级, 模糊综合评判, 影响度

Abstract: With the rapid development of China’s high-speed railway, some key lines will inevitably pass through the goaf site. Therefore, the “activation” classification of high-speed railway subgrade in goaf area needs to be solved first prior to a series of problems such as route selection of high-speed railway in goaf area. In this article, the underground goaf at the chainages DK259+135.95−DK259+710.00 of Taiyuan-Jiaozuo high-speed railway is taken as an example. A classification and evaluation model for "activation" of high-speed railway subgrade in goaf area is established using the basic principles of analytic hierarchy process and fuzzy mathematics. Firstly, five major factors and nineteen sub-factors affecting the classification of high-speed railway subgrade in goaf area are determined. On this basis, the classification standard of influence degree for “activation” classification factors of high-speed railway subgrade in goaf area is proposed, and the corresponding classification standard of “activation” of high-speed railway subgrade in goaf area is obtained by combining the influence degree of each major factor. By adopting the analytic hierarchy process, the weights of influencing factors and evaluation factors are determined, and the membership degrees of evaluation factors are obtained in combination with Delphi method, fuzzy statistics and membership function. Meanwhile, the typical characteristics of “activation” classification of high-speed railway subgrade in goaf area are preliminarily examined. Finally, the “activation” classification of the railway subgrade in goaf area is carried out using fuzzy comprehensive evaluation method, and the subgrade in this project is determined to be “necessarily activated”. The classification conclusion of the model is in line with the actual working conditions of the site, which provides a guiding significance for the later treatment of the subgrade in goaf area by grouting. After grouting treatment for the goaf area, another “activation” classification is carried out, and the subgrade in this project is determined to be “inactive”, which provides a scientific and reasonable demonstration for the safe operation of Taiyuan-Jiaozuo high-speed railway.

Key words: high-speed railway, subgrade in goaf area, “activation”classification, fuzzy comprehensive evaluation, influence degree

中图分类号: 

  • TU470
[1] 陈伟志, 张莎莎, 李安洪, . 温度循环下压实粗粒盐渍土水盐迁移与变形响应[J]. 岩土力学, 2022, 43(S2): 74-84.
[2] 陈康, 刘先峰, 袁胜洋, 潘申鑫, 马杰, 蒋关鲁, . 饱和红层泥岩填料累积变形特性及安定界限研究[J]. 岩土力学, 2022, 43(5): 1261-1268.
[3] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[4] 薛彦瑾, 王起才, 马丽娜, 张戎令, 代金鹏, 王强, . 高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J]. 岩土力学, 2020, 41(9): 3109-3118.
[5] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[6] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[7] 屈畅姿, 康凯, 魏丽敏, 郭坤, 何群, 王永和, . 高铁路-涵过渡段路基动力响应特性及 长期动力稳定性研究[J]. 岩土力学, 2020, 41(10): 3432-3242.
[8] 宋宏芳, 岳祖润, 李佰林, 张松, . 季节冻土区高速铁路防冻胀路基保温强化特性研究[J]. 岩土力学, 2019, 40(10): 4041-4048.
[9] 谢 涛,罗 强,周 成,张 良,蒋良潍, . 高速铁路小变形下陡坡地基路肩桩板墙力学响应[J]. , 2018, 39(1): 45-52.
[10] 邱明明 ,杨 啸 ,杨果林 ,房以河,. 云桂高速铁路新型全封闭路堑基床动响应特性研究[J]. , 2016, 37(2): 537-544.
[11] 姜领发 ,熊署丹 ,陈善雄 ,许锡昌,. 列车荷载作用下高铁路基速度传递规律模型试验研究[J]. , 2015, 36(S1): 265-269.
[12] 薛富春 ,张建民 ,  . 移动荷载下高铁路基段振动加速度频谱衰减特性[J]. , 2015, 36(S1): 445-451.
[13] 梁 鑫 ,程谦恭 ,陈建明 ,李良广,. 采空区上方高速铁路桥梁群桩基础模型试验研究[J]. , 2015, 36(7): 1865-1876.
[14] 李 波 ,吴 立 ,邓宗伟 ,陈 剑 ,唐爱松,. 高速铁路隧道围岩抗力系数现场试验与理论研究[J]. , 2015, 36(2): 532-541.
[15] 刘 华 ,牛富俊 ,牛永红 ,许 健,. 结构型式对寒区高铁路基冻结特征影响试验研究[J]. , 2015, 36(11): 3135-3142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .