岩土力学 ›› 2022, Vol. 43 ›› Issue (6): 1705-1716.doi: 10.16285/j.rsm.2021.1565

• 数值分析 • 上一篇    下一篇

层状土场中冲刷作用下部分埋置单桩动力响应分析

马建军1, 2,韩书娟1,高笑娟1, 2,李达1,郭颖2   

  1. 1. 河南科技大学 土木工程学院,河南 洛阳 471023;2. 河南科技大学 河南省建筑安全与防护工程技术研究中心,河南 洛阳 471023
  • 收稿日期:2021-09-14 修回日期:2022-03-03 出版日期:2022-06-21 发布日期:2022-06-30
  • 作者简介:马建军,男,1982年生,博士,副教授,主要从事土−结构相互作用的非线性动力学研究。
  • 基金资助:
    国家自然科学基金(No.11502072);河南省高等学校青年骨干教师培养计划(No.2019GGJS076)

Dynamic response analysis of the partially-embedded single pile affected by scour in layered soils

MA Jian-jun1, 2, HAN Shu-juan1, GAO Xiao-juan1, 2, LI Da1, GUO Ying2   

  1. 1. School of Civil Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; 2. Engineering Technology Research Center of Safety and Protection of Buildings of Henan Province, Henan University of Science and Technology, Luoyang, Henan 471023, China
  • Received:2021-09-14 Revised:2022-03-03 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(11502072) and the Young-backbone Teacher Foundation of Colleges and Universities of Henan Province(2019GGJS076).

摘要: 桩周土场受冲刷作用的变化是部分埋置单桩结构失效的主要原因之一。工程中土场多呈层状,此类场地中桩基的力学特性研究日益受到关注。为精确揭示冲刷作用对层状土场中部分埋置单桩动力响应的影响,基于改进Vlasov地基模型,利用Hamilton原理建立层状土场中横向受荷单桩的动力学模型。利用有限差分法求解受冲刷作用单桩的固有频率,实现对冲刷作用下土−结构相互作用系统的准确建模,进而用Green函数法求得单桩受迫振动的解析解。通过数值计算和参数分析,研究了层状土场的物理特性对受冲刷作用部分埋置单桩动力响应的影响。结果表明:基于改进Vlaosv地基模型建立的层状土场中部分埋置单桩动力学模型可精确预测冲刷作用对桩基动力学特性的影响。随冲刷程度加剧,层状土场中单桩的第一阶固有频率显著降低,改进Vlasov地基模型中各层土体的地基反力系数均减小,剪切系数则增大。当冲刷至非埋置段桩长 ( 为桩长)时,部分埋置单桩在动荷载作用下出现横向失稳现象。随底层土体厚度增加,各冲刷等级下单桩的第一阶固有频率均增大。如果第1层土的弹性模量增大了约0.43倍、1.14倍、1.86倍,则冲刷等级为0时单桩第一阶固有频率分别增大了约8.9%、19.5%、27.1%。

关键词: 部分埋置单桩, 层状土场, 改进Vlasov地基模型, 冲刷作用, 有限差分法, Green函数法

Abstract: The change of the soils around pile affected by scour is one of the major causes for the failure of structure of the partially-embedded single pile. The soil fields in engineering are mostly layered, and the research on the mechanical characteristics of pile foundation in layered soils has attracted increasing attention. In order to accurately reveal the effect of scour on the dynamic response of the partially-embedded single pile in layered soils, a dynamic model of the laterally loaded single pile in layered soils is established by employing Hamilton’s principle based on the modified Vlasov foundation model. Then, the finite difference method is used to solve the natural frequencies of the single pile affected by scour, and to achieve accurate modeling of the soil-structure interaction (SSI) system affected by scour. Analytical solution of the forced vibration of the single pile is obtained by Green’s function method. The effects of physical characteristics of the layered soils on the dynamic response of the partially-embedded single pile are studied by numerical calculation and parameter analysis. The results show that the dynamic model of the partially-embedded single pile in layered soils based on the modified Vlaosv foundation model can accurately predict the impact of scour on its dynamic characteristics. As the scour degree intensifies, the first-order natural frequencies of the single pile in layered soils decrease significantly, and the subgrade reaction coefficient of each layer of soils in the improved Vlasov foundation model decreases, and the shear coefficient increases. When the length of the non-embedded section of the pile satisfies ( is the pile length), the lateral instability of the partially embedded single pile is observed under the dynamic load. As the thickness of the underlying soil increases, the first-order natural frequencies of the single pile at each scour level increase. As the elastic modulus of the first layer of soil increases by about 0.43 times, 1.14 times, and 1.86 times, the first-order natural frequencies of the single pile at the scour level of 0 increase by about 8.9%, 19.5%, and 27.1%.

Key words: partially-embedded single pile, layered soils, modified Vlasov foundation model, scour effect, finite difference method, Green’s function method

中图分类号: 

  • TU473
[1] 董建华, 吴晓磊, 师利君, 于小燕, 何鹏飞, . 多年冻土区L型挡墙水平冻胀效应计算方法与分析[J]. 岩土力学, 2022, 43(4): 879-890.
[2] 夏才初, 徐英俊, 王辰霖, 赵海鸥, 薛小代, . 基于非稳态渗流过程的压气储能 洞室空气渗漏率计算[J]. 岩土力学, 2021, 42(7): 1765-1773.
[3] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[4] 仉文岗, 王琦, 陈福勇, 陈龙龙, 王鲁琦, 王林, 张艳梅, 王玉琦, 朱星, . 考虑岩体空间变异性的边坡可靠度分析 及抗滑桩随机响应研究[J]. 岩土力学, 2021, 42(11): 3157-3168.
[5] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[6] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[7] 陈栋, 王恩元, 李楠, . 不同煤岩介质模型的波场特征研究[J]. 岩土力学, 2019, 40(S1): 449-458.
[8] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[9] 龚文惠, 赵旭东, 邱金伟, 李逸, 杨晗. 饱和软土大应变自重固结非线性分析[J]. 岩土力学, 2019, 40(6): 2099-2107.
[10] 黄生根,刘东军,胡永健,. 电磁波CT技术探测溶洞的模拟分析与应用研究[J]. , 2018, 39(S1): 544-550.
[11] 李传勋,董兴泉,金丹丹,谢康和,. 考虑起始水力坡降的软土大变形非线性固结分析[J]. , 2017, 38(2): 377-384.
[12] 谢新宇,韩冬冬,黄 利,王忠瑾,刘开富,. 粗糙条形基础极限承载力系数Nγ的计算[J]. , 2016, 37(S1): 209-214.
[13] 董兴泉,李传勋,陈蒙蒙,张 军,谢康和,. 考虑非达西渗流的双层软土地基大变形非线性固结分析[J]. , 2016, 37(8): 2321-2331.
[14] 李 尧,李术才,徐 磊,刘 斌,林春金,张凤凯,杨 磊. 隧道衬砌病害地质雷达探测正演模拟与应用[J]. , 2016, 37(12): 3627-3634.
[15] 徐令宇,蔡 飞,陈国兴,王国新,. 考虑循环软化的非线性动力本构模型在FLAC3D中的实现[J]. , 2016, 37(11): 3329-3335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[2] 鄢治华,刘志伟,刘厚健. 黄河阶地上某电厂高边坡参数选取及其工程治理[J]. , 2009, 30(S2): 465 -468 .
[3] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[4] 江 权 ,冯夏庭 ,周 辉 ,赵 阳 ,徐鼎平 ,黄 可 ,江亚丽. 层间错动带的强度参数取值探讨[J]. , 2011, 32(11): 3379 -3386 .
[5] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[6] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[7] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[8] 孟 振,陈锦剑,王建华,尹振宇. 砂土中螺纹桩承载特性的模型试验研究[J]. , 2012, 33(S1): 141 -145 .
[9] 罗 刚 ,胡卸文 ,顾成壮 . 强震作用下顺层岩质斜坡动力失稳机制及启动速度研究[J]. , 2013, 34(2): 483 -490 .
[10] 付晓东,盛 谦,张勇慧. 水电站地下洞室群分步开挖的非连续变形分析[J]. , 2013, 34(2): 568 -574 .