岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1749-1760.doi: 10.16285/j.rsm.2021.1758

• 基础理论与实验研究 •    下一篇

干湿过程中花岗岩残积土抗拉强度变化研究

汤连生1, 2, 3,王昊1, 2, 3,孙银磊1, 2, 3,刘其鑫1, 2, 3   

  1. 1. 中山大学 地球科学与工程学院,广东 珠海 519082;2. 中山大学 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082; 3. 中山大学 广东省地球动力作用与地质灾害重点实验室,广东 珠海 519082
  • 收稿日期:2021-10-19 修回日期:2022-03-30 出版日期:2022-07-26 发布日期:2022-08-03
  • 作者简介:汤连生,男,1963年生,博士,教授,博士生导师,主要从事非饱和土、特殊土方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 41877229,No. 42102303);广东省自然科学基金(No. 2018B030311066,No. 2019A1515010554);中国博士后科学基金(No. 2019M663241)

Change of tensile strength of granite residual soil during drying and wetting

TANG Lian-sheng1, 2, 3, WANG Hao1, 2, 3, SUN Yin-lei1, 2, 3, LIU Qi-xin1, 2, 3   

  1. 1. School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; 3. Guangdong Provincial Key Lab. of Geodynamics and Geohazards, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
  • Received:2021-10-19 Revised:2022-03-30 Online:2022-07-26 Published:2022-08-03
  • Supported by:
    This work was supported by the General Program National Natural Science Foundation of China (41877229, 42102303), Guangdong Basic and Applied Basic Research Foundation (2018B030311066, 2019A1515010554) and China Postdoctoral Science Foundation (2019M663241).

摘要: 利用自制的土体直拉强度测试仪,研究了重塑花岗岩残积土在不同含水率下、增湿过程和干燥过程中抗拉强度的变化规律,并从胶结力和湿吸力的角度讨论了抗拉强度变化规律的微观机制。结果表明:不同含水率条件下抗拉强度随含水率增加呈现先增后减,峰值两侧呈较好的指数规律;增湿过程中抗拉强度随含水率增加呈先增后减趋势,峰值两侧为一次函数规律;干燥过程中抗拉强度随含水率降低出现指数增加阶段、平稳阶段和小幅降低阶段3个阶段,其抗拉强度峰值为不同含水率条件下抗拉强度的4倍。花岗岩残积土在不同含水率和增湿过程中的抗拉强度的变化主要受湿吸力控制,而干燥过程中抗拉强度变化的同时受湿吸力和胶结力的控制,且胶结力对抗拉强度的贡献超过70%。土体的干燥开裂过程对应干燥过程中抗拉强度变化的几个阶段,干燥时湿吸力是土体内部拉应力的来源,这说明湿吸力既是抗拉强度的贡献者,同时也是抗拉强度的破坏者。该研究结果从另一种角度解释了土体抗拉强度的形成来源及其变化的主控因素。

关键词: 抗拉强度, 花岗岩残积土, 干湿过程, 湿吸力, 胶结力, 干燥开裂

Abstract: Using the self-developed soil tensile strength tester, the tensile strength variations of the remolded granite residual soil with water content in wetting or drying process were studied. The microscopic mechanism of the tensile strength variation was investigated through the theories of cementation force and absorbed suction. The results show that the tensile strength first increases and then decreases with increasing the water content, and the relationships between tensile strength and water content on both sides of the peak value can be expressed by exponential functions. In the process of humidification, the tensile strength first increases and then decreases with the increase of moisture content, and the data on both sides of the peak are fitted by linear functions. In the drying process, three stages can be identified in the tensile strength, i.e. exponential increase stage, stable stage and slight decrease stage, the peak tensile strength is 4 times of tensile strengths at different moisture contents. The change of tensile strength of granite residual soil in the process of humidification with different water contents are mainly controlled by absorbed suction. While the change of tensile strength in the drying process is controlled by both absorbed suction and cementation force, the contribution of the cementation force to the tensile strength is more than 70%. The dry cracking process of soil corresponds to several stages of the tensile strength change in the drying process. In the drying process, absorbed suction is the source of the internal tensile stress of soil, indicating that absorbed suction is not only a contributor to tensile strength, but also a destroyer of tensile strength. The results of this study explain the formation source of the tensile strength of the soil and the main controlling factors of its change from another perspective.

Key words: tensile strength, granite residual soil, dry and wet process, absorbed suction, cementation force, dry cracking

中图分类号: 

  • TU 411
[1] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[2] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[3] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[4] 汪华斌, 周宇, 余刚, 周博, 张爱军, . 结构性花岗岩残积土三轴试验研究[J]. 岩土力学, 2021, 42(4): 991-1002.
[5] 王港, 张先伟, 刘新宇, 徐倚晴, 芦剑锋, . 厦门花岗岩残积土的压缩变形特性及其微观机制[J]. 岩土力学, 2021, 42(12): 3291-3300.
[6] 张志韬, 陈生水, 吉恩跃, 傅中志, . 聚丙烯纤维加筋砾质黏土的拉伸断裂特性研究[J]. 岩土力学, 2021, 42(10): 2713-2721.
[7] 李二强, 张洪昌, 张龙飞, 朱天宇, 路景淦, 冯吉利, . 不同层理倾角炭质板岩巴西劈裂 试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869-2879.
[8] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[9] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[10] 刘杰, 李运舟, 杨渝南, 李洪亚, 孙涛, 李政, . 自膨胀锚杆锚固体膨胀剂极限掺量确定方法研究[J]. 岩土力学, 2020, 41(10): 3266-3278.
[11] 蔡雨, 徐林荣, 周德泉, 邓超, 冯晨曦, . 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8): 3011-3018.
[12] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[13] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[14] 郭林坪,孔令伟,徐 超,杨爱武,. 厦门花岗岩残积土物理力学指标关联性定量表征初探[J]. , 2018, 39(S1): 175-180.
[15] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .