岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 799-809.doi: 10.16285/j.rsm.2022.0471

• 基础理论与实验研究 • 上一篇    下一篇

落石冲击下预应力加筋土路堤变形及荷载传递机制

马书文1, 2,卢谅1, 3, 4,王宗建5,王经天1, 3,李蓝星1, 3   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 重庆工业职业技术学院 建筑工程学院,重庆 401120; 3. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045;4. 重庆大学 库区环境地质灾害防治国家地方联合工程研究中心,重庆 400045;5. 重庆交通大学 河海学院,重庆 400074
  • 收稿日期:2022-04-08 接受日期:2022-05-05 出版日期:2023-03-21 发布日期:2023-03-24
  • 通讯作者: 卢谅,女,1978年生,博士,副教授、博士生导师,主要从事岩土工程灾害等方面的教学和研究。E-mail: luliangsky@163.com E-mail:mashuwenwen@163.com
  • 作者简介:马书文,女,1992年生,博士研究生,主要从事岩土工程灾害预警与防治方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.52178314);重庆市研究生科研创新项目(No.CYB22031)。

Deformation and load transmission mechanism of prestressed reinforced embankment subjected to rockfall impacts

MA Shu-wen1, 2, LU Liang1, 3, 4, WANG Zong-jian5, WANG Jing-tian1, 3, LI Lan-xing1, 3   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Department of Architectural & Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing 400045, China; 4. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, China; 5. College of River & Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2022-04-08 Accepted:2022-05-05 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52178314) and the Graduate Scientific Research and Innovation foundation of Chongqing(CYB22031).

摘要: 针对偏远山区素填土公路在落石冲击下易产生大面积凹陷破坏的问题,提出运用预应力加筋土路堤解决的方法。为了探究预应力加筋土路堤在落石冲击下的变形性能、力学响应规律和荷载传递机制,设计并实施了落石冲击作用下预应力加筋土路堤和素填土路堤对比模型试验。试验发现:预应力加筋土路堤中形成的凹坑尺寸明显小于素填土路堤,体现了预应力加筋土路堤良好的抗冲击变形性能;随着冲击次数的增加,路堤刚度逐渐增加,导致路堤内部冲击附加应力时程曲线逐渐由“抛物线型单峰”转变为“双峰”分布,且预应力加筋土路堤工况中“双峰”的出现早于素填土路堤;落石在预应力加筋土路堤中的冲击力持续作用时间小于其在素填土路堤中的持续作用时间,且分布更趋均匀,更有利于冲击荷载的扩散;随着冲击次数的增加,预应力加筋土路堤内部冲击力传递率呈先增加后减小的变化趋势,与筋材变形规律一致。结合Levenberg-Marquardt优化算法得到了关于凹坑尺寸和冲击次数的预测方法,可为预应力加筋土路堤在崩塌灾害多发地区的工程应用提供借鉴,为工程预警提供参考。

关键词: 落石冲击, 预应力加筋土路堤, 冲击变形, 附加应力, 冲击持续时间, 冲击力传递率

Abstract: The prestressed reinforced soil structure was proposed to solve the problem of large-area depressions of soil highways under rockfall impacts in remote mountain areas. Comparative model tests for prestressed reinforced soil embankment and traditional soil embankment were conducted to explore the deformation performance, mechanical response, and load transmission mechanism of both embankments under rockfall impacts. The results show that the size of pits formed in prestressed reinforced soil embankment is significantly smaller than that in traditional soil embankment, which reflects the good impact deformation resistance of prestressed reinforced soil embankment. The embankment stiffness increases with the increase of impact times, resulting in the change of the time history of impact-induced additional stress in the embankment from “parabolic single peak” to “double peak”, and the “double peak” in the prestressed reinforced soil embankment occurs earlier than that in the traditional soil embankment. The duration of rockfall impact on the prestressed reinforced soil embankment is less than that on the traditional soil embankment, and the distribution of the impact on the prestressed reinforced soil embankment is more uniform, indicating that the prestressed reinforced soil embankment is more conducive to the impact diffusion. In addition, the internal impact load transmission ratio for prestressed reinforced soil embankment increases first and then decreases with the increase of impact times, which is consistent with the deformation law of reinforcement structure. The pit sizes corresponding to various impact times are predicted by the Levenberg-Marquardt optimization algorithm, which can provide reference for the engineering application of prestressed reinforced soil embankment and early warning in collapse disaster prone areas.

Key words: rockfall impact, prestressed reinforced soil embankment, impact deformation, additional stress, impact duration, impact transmission ratio

中图分类号: 

  • TU472
[1] 冉龙洲, 袁松, 王希宝, 王峥峥, 张生, . 明棚洞落石冲击荷载计算方法研究[J]. 岩土力学, 2023, 44(6): 1748-1760.
[2] 崔瑜瑜, 吴立鹏, 沈兴华, 王兴召, 秦亚琼, 刘杰, 卢正, 吴磊, . 粉质黏土基坑卸荷隆起变形的简化计算方法[J]. 岩土力学, 2023, 44(5): 1425-1434.
[3] 徐方, 张期树, 冷伍明, 邓志龙, 董俊利, 刘思慧, . 基于附加应力扩散效应的新型预应力路堤 稳定性分析[J]. 岩土力学, 2022, 43(S1): 431-442.
[4] 冷伍明, 邓志龙, 徐方, 张期树, 董俊利, 刘思慧. 基于路基土蠕变效应的路基预应力损失模型研究[J]. 岩土力学, 2022, 43(6): 1671-1682.
[5] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[6] 童星, 袁静, 姜叶翔, 刘兴旺, 李瑛, . 基于Mindlin解的基坑分层卸荷附加应力计算 及回弹变形的多因素影响分析[J]. 岩土力学, 2020, 41(7): 2432-2440.
[7] 郎瑞卿, 杨爱武, 闫澍旺, . 修正等应变假定下刚性桩复合地基固结特性分析[J]. 岩土力学, 2020, 41(3): 813-822.
[8] 艾希, 冷伍明, 徐方, 张期树, 翟斌, . 新型预应力路基水平附加应力计算的图表法[J]. 岩土力学, 2020, 41(1): 253-266.
[9] 卢志国, 鞠文君, 赵毅鑫, 王浩, 郑建伟, 刘爱卿, . 采动诱发应力主轴偏转对断层稳定性影响分析[J]. 岩土力学, 2019, 40(11): 4459-4466.
[10] 冷伍明, 张期树, 徐方, 聂如松, 杨奇, 艾希, . 新型预应力路基坡面法向附加应力扩散规律分析[J]. 岩土力学, 2019, 40(10): 3987-4000.
[11] 周 勇,令永强,杨校辉, . 考虑附加应力作用的桩锚支护结构稳定性与位移关系研究[J]. , 2018, 39(8): 2913-2921.
[12] 何 团,毛德兵,黄志增,孙晓冬,张学亮, . 特厚煤层区段防水煤柱稳定性评价及保护技术研究[J]. , 2017, 38(4): 1148-1153.
[13] 王新泉 ,张 强 ,张世民 ,崔允亮 ,周星德,. 考虑异形效应Y形桩端阻力产生的附加应力研究[J]. , 2016, 37(5): 1268-1280.
[14] 许锡昌,陈善雄,姜领发. 斜坡地基附加应力分布规律模型试验及数值模拟[J]. , 2015, 36(S2): 267-273.
[15] 张 瑜 ,吴江斌 ,蔡永昌,. 考虑桩径和桩侧摩阻力分布的改进Geddes 桩基沉降分析方法[J]. , 2015, 36(S2): 406-412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 沈 扬,周 建,龚晓南,刘汉龙,. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. , 2009, 30(12): 3720 -3726 .
[2] 李利平,李术才,张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. , 2010, 31(2): 523 -528 .
[3] 张 文,王泽文,乐励华. 双重介质中的一类核素迁移数学模型及其反演[J]. , 2010, 31(2): 553 -558 .
[4] 李丽华,陈 轮,高盛焱. 翠湖湿地软土触变性试验研究[J]. , 2010, 31(3): 765 -768 .
[5] 胡亚元. 利用EVP模型确定堆载预压法的卸载时机[J]. , 2010, 31(6): 1827 -1832 .
[6] 章定文,韩文君,刘松玉. 初始应力各向异性状态下圆柱孔扩张机制分析[J]. , 2010, 31(S2): 104 -108 .
[7] 李克钢,侯克鹏,李 旺. 指标动态权重对边坡稳定性的影响研究[J]. , 2009, 30(2): 492 -496 .
[8] 洪 勇,孙 涛,栾茂田,郑孝玉,汪发武. 土工环剪仪的开发及其应用研究现状[J]. , 2009, 30(3): 628 -633 .
[9] 张乾兵,朱维申,李 勇,孙林锋,张 磊. 洞群模型试验中微型多点位移计的设计及应用[J]. , 2011, 32(2): 623 -628 .
[10] 李京爽,侯瑜京,徐泽平,梁建辉,张雪东,宋献慧. 砂土自由场地基水平垂直振动离心模拟试验[J]. , 2011, 32(S2): 208 -214 .