岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 245-256.doi: 10.16285/j.rsm.2022.0744

• 岩土工程研究 • 上一篇    下一篇

渤海海峡跨海通道工程区海域三维地应力测试

王锦山1,彭华2   

  1. 1. 河北科技师范学院 城市建设学院,河北 秦皇岛 066004;2. 中国地质科学院 地质力学研究所,北京 100081
  • 收稿日期:2022-05-06 接受日期:2022-07-10 出版日期:2024-01-10 发布日期:2024-01-17
  • 作者简介:王锦山,男,1966年生,博士后,教授,研究生导师,主要从事岩土力学、岩土工程稳定性方面的研究工作。
  • 基金资助:
    国家海洋地质专项资助项目(No. GZH01-07-3-2)。

Measurement of 3D in-situ stress in the sea area of trans-Bohai strait passage engineering region

WANG Jin-shan1, PENG Hua2   

  1. 1.College of Urban Construction, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China; 2.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2022-05-06 Accepted:2022-07-10 Online:2024-01-10 Published:2024-01-17
  • Supported by:
    This work was supported by the National Marine Geology Special Project of China(GZH01-07-3-2).

摘要: 跨渤海通道海域缺乏实测地应力基础数据,而海域钻探原位实测又承担着巨大风险与重重困难,为取得工程区现今地应力场特征第一手资料,利用以水压致裂地应力测量为主,以空心包体、非弹性应变恢复、差应变、声波各向异性法为辅的综合地应力测量技术,对研究区海域开展三维地应力测试与研究,建立了线性回归方程,得到了回归拟合曲线。结果表明,渤海海峡最大水平主应力σH、最小水平主应力σh 与垂直主应力σv 均随测试深度的增加呈线性增大规律;海峡南部地应力状态存在σHσhσv 的关系,处于逆冲应力状态,应力场方向为NE,最大水平主应力大于垂直主应力,区域内构造力处于主导地位;海峡北部应力状态为 σHσv >σh ,有利于走滑断层活动,应力场方向为NE,区域内构造力处于主导地位;整个工程区内地应力各分量值之间相差不大,远远小于区内断层活动应力值的下限,表明研究区目前处于稳定状态。研究结果符合一般地应力测量规律,测试流程符合地应力测试要求,测试数据可用于分析区域地应力状态。

关键词: 跨渤海海峡大通道, 工程区海域三维地应力, 综合测量技术

Abstract: Trans-Bohai passage sea area lacks basic data on measured in-situ stress. Conducting in-situ measurements in this area is challenging and carries significant risks. To obtain firsthand data on the current in-situ stress field characteristics, a comprehensive in-situ stress measurement technology is employed. This technology primarily relies on hydraulic fracturing in-situ stress measurement, supplemented by methods such as hollow inclusion, inelastic strain recovery, differential strain, and acoustic anisotropy. Three-dimensional in-situ stress measurement and research are conducted in the sea area of the study region. A linear regression equation is established, and a regression fitting curve is obtained. The results reveal certain patterns: as the test depth increases in the Bohai strait, the maximum horizontal principal stress σ, minimum horizontal principal stress σ, and vertical principal stress σ all increase linearly with the increase of test depth. In the southern part of the strait, the in-situ stress state follows the relationshipσHσhσv  , indicating a thrust stress state. The stress field direction is NE, with the maximum horizontal principal stress exceeding the vertical principal stress, suggesting dominance of tectonic forces in the region. In the northern part of the strait, the stress state is σHσv >σ, which is conducive to strike-slip fault activity. The stress field direction remains NE, and tectonic forces dominate in the region. Throughout the entire engineering region, there is minimal difference in each component value of the in-situ stress. These values are significantly lower than the lower limit of the active stress value of faults in the area, indicating that the study area is currently in a stable state. These findings align with the general principles of in-situ stress measurement. The testing process adheres to the requirements of in-situ stress testing, and the obtained data can be used to analyze the regional in-situ stress state.

Key words: trans-Bohai strait passage, 3D in-situ stress in the sea area of engineering region, comprehensive measurement technology

中图分类号: 

  • TU 452
[1] 闵凡路, 申政, 李彦澄, 袁大军, 陈健, 李凯, . 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究[J]. 岩土力学, 2024, 45(2): 364-374.
[2] 张宪尚, 文光才, 朱哲明, 隆清明, 刘杰, . 冲击荷载下充填节理岩体I型裂纹动态扩展特性研究[J]. 岩土力学, 2024, 45(2): 396-406.
[3] 江权, 刘强, . 地下洞室变形破坏物理模拟的力学相似畸变映射原理与实例分析[J]. 岩土力学, 2024, 45(1): 20-37.
[4] 杜布戈, 张广清, 周大伟, 屈乐, 邱仁怡, 范宗洋, . CO2-水作用对层状页岩拉伸破坏影响的微观损伤研究[J]. 岩土力学, 2024, 45(1): 59-67.
[5] 朱姝, 阙相成, 朱珍德, 朱其志, . 考虑截面规则性的柱状节理岩体变形及强度特性研究[J]. 岩土力学, 2024, 45(1): 213-225.
[6] 程树范, 曾亚武, 叶阳, 高睿, . 甘肃红层泥岩耐崩解试验与矿物夹杂效应研究[J]. 岩土力学, 2023, 44(S1): 99-106.
[7] 刘畅, 江权, 阮航, 李超毅, 杜三林. 常法向应力下非连续结构面剪切破坏特征研究[J]. 岩土力学, 2023, 44(S1): 173-185.
[8] 姜明归, 孙伟, 李金鑫, 樊锴, 刘增, . 冲击荷载下全尾砂胶结充填体断裂特性与能耗特征分析[J]. 岩土力学, 2023, 44(S1): 186-196.
[9] 王文东, 邓华锋, 李建林, 冯云杰, 李冠野, 齐豫, . 基于有效受剪面积的节理面吻合度量化方法研究[J]. 岩土力学, 2023, 44(S1): 249-258.
[10] 程树范, 曾亚武, 高睿, 李涵, . 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学, 2023, 44(S1): 332-340.
[11] 王盛年, 苏俊, 郭双枫, 谷雷雷, 陈泽玮, 赵凯, . 地聚物稳定粗粒填料静动力学特性试验研究[J]. 岩土力学, 2023, 44(S1): 350-364.
[12] 彭阳, 高永涛, 王文林, 甫尔卡特, 温建敏, 周喻, . 单侧限压缩煤岩组合体的破裂机制研究[J]. 岩土力学, 2023, 44(S1): 387-398.
[13] 梁金平, 荆浩勇, 侯公羽, 李小瑞, 张明磊, . 卸荷条件下围岩的细观损伤及力学特性研究[J]. 岩土力学, 2023, 44(S1): 399-409.
[14] 沈扬, 马英豪, 芮笑曦. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究[J]. 岩土力学, 2023, 44(8): 2195-2204.
[15] 辛子朋, 柴肇云, 孙浩程, 李天宇, 刘新雨, 段碧英. 砂质泥岩峰后破裂承载特征与块体分布规律研究[J]. 岩土力学, 2023, 44(8): 2369-2380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .