岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1575-1584.doi: 10.16285/j.rsm.2022.1125

• 基础理论与实验研究 • 上一篇    下一篇

水位变化下含裂缝非饱和土挡墙的地震主动土压力研究

张常光1, 2,关港辉1,李海祥1,范家燊1,石晶1   

  1. 1. 长安大学 建筑工程学院,陕西 西安 710061;2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2022-07-19 接受日期:2022-10-31 出版日期:2023-06-14 发布日期:2023-06-14
  • 作者简介:张常光,男,1982年生,博士,教授,主要从事非饱和土与地下工程等方面的研究。
  • 基金资助:
    地质灾害防治与地质环境保护国家重点实验室开放基金(No.SKLGP2020K022);长安大学中央高校基本科研业务费专项资金(No.300102282206);陕西省自然科学基金(No.2021JM-165,No.2021JM-170)。

Seismic active earth pressure on a retaining wall in unsaturated soils with cracks for changing water table

ZHANG Chang-guang1, 2, GUAN Gang-hui1, LI Hai-xiang1, FAN Jia-shen1, SHI Jing1   

  1. 1. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi 710061, China; 2. Stake Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, Chin
  • Received:2022-07-19 Accepted:2022-10-31 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2020K022), the Fundamental Research Funds for the Central Universities of Chang’an University (300102282206) and the Natural Science Foundation of Shaanxi Province (2021JM-165, 2021JM-170).

摘要: 高烈度区挡墙抗震设计的主要荷载是地震主动土压力。首先根据水位、缝深和墙踵的相对位置关系,提出了含裂缝非饱和土挡墙在高、中、低水位下地震主动土压力分析的3种力学模型;继而通过拟动力法计算墙后滑动土体的地震效应,运用非饱和土力学原理与极限平衡法建立了水位变化下倾斜挡墙的地震主动土压力解答,并给出了迭代应用步骤、对比文献理论解答与振动台实测;最后探讨了水位、缝深以及土体非饱和特性对地震主动土压力系数的影响规律。研究结果表明:所得非饱和土挡墙地震主动土压力解答综合考虑了水位、缝深与土体非饱和特性,能退化为经典土压力公式,与文献理论解答、振动台实测吻合良好且应用较便捷,具有重要理论意义和良好的应用前景;地震主动土压力受水位、缝深、基质吸力、吸力分布与吸力角的影响均很显著,需采用工程措施维持基质吸力、吸力分布、低水位、小缝深等稳定存在以优化挡墙抗震设计。

关键词: 地震主动土压力, 非饱和土, 拟动力法, 墙后水位, 土体裂缝

Abstract: Seismic active earth pressure is the primary load for retaining wall design in high earthquake-intensity areas. Based on the relative position relationship among water table, crack depth and wall heel, this study firstly presented three mechanical models of seismic active earth pressure on retaining walls in unsaturated soils with cracks, which corresponded separately to high/medium/low water tables. The pseudo-dynamic method was then employed to calculate the seismic effect of sliding soils behind a retaining wall. The solution of seismic active earth pressure on inclined retaining walls for changing water table was derived by adopting mechanical principles of unsaturated soils and the limit equilibrium method. The iterative steps to be easily conducted were provided, and the proposed solution was compared with the results of theoretical analysis and the shaking table test available in the literature. Finally, the influences of water table, crack depth and unsaturated soil characteristics on the seismic active earth pressure coefficient were discussed. The results show that the proposed solution well considers the effects of water table, crack depth and unsaturated soil characteristics, which can be degraded to the classical earth pressure equation. Additionally, it agrees well with the existing theoretical solution and measured data of the shaking table test. Consequently, the proposed solution has an important theoretical significance and good application prospect. The influences of water table, crack depth, matric suction, suction distribution and suction angle on the seismic active earth pressure are all apparent. In order to optimize the seismic design of a retaining wall, engineering measures should be taken to maintain stable existence of matric suction, suction distribution, low water table and small crack depth.

Key words: seismic active earth pressure, unsaturated soils, pseudo-dynamics method, water table behind a retaining wall, soil crack

中图分类号: 

  • TU476.4
[1] 赵煜鑫, 李旭, 林森, 王逍萌, . 广吸力范围内一种改进的非饱和土抗剪强度模型[J]. 岩土力学, 2023, 44(4): 990-1000.
[2] 舒进辉, 马强, 常立君, . 非饱和土地基中复合多层波阻板对S波的隔离效应[J]. 岩土力学, 2023, 44(1): 217-231.
[3] 陈勇, 苏剑, 曹玲, 王力, 王世梅, . 基于数据挖掘的土−水特征曲线演化规律研究[J]. 岩土力学, 2022, 43(S2): 23-34.
[4] 秦爱芳, 孟红苹, 江良华. 电渗−堆载作用下非饱和土轴对称固结特性分析[J]. 岩土力学, 2022, 43(S1): 97-106.
[5] 曾立峰, 邵龙潭, 郭晓霞, . 土中有效应力概念的起源与发展[J]. 岩土力学, 2022, 43(S1): 127-144.
[6] 汪磊, 张立婷, 沈思东, 徐永福, 夏小和. 分段循环荷载作用下非饱和土轴对称固结特性研究[J]. 岩土力学, 2022, 43(S1): 203-212.
[7] 李见飞. 抗滑桩加固三维复杂边坡抗震设计的 新方法——拟动力法[J]. 岩土力学, 2022, 43(S1): 275-285.
[8] 翟张辉, 张亚国, 李同录, 肖书雄, . 考虑边界效应的非饱和土圆柱孔扩张问题解析[J]. 岩土力学, 2022, 43(S1): 301-311.
[9] 王智超, 罗磊, 田英辉, 张春会, . 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824.
[10] 王海曼, 倪万魁, 刘魁, . 延安压实黄土土−水特征曲线的快速预测方法[J]. 岩土力学, 2022, 43(7): 1845-1853.
[11] 高游, 李泽, 孙德安, 于海浩, 陈波, . 考虑初始孔隙比影响的单/双峰土−水特征曲线 模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.
[12] 李雨浓, 刘畅, 王立伟, . 地震效应下三维非均质土坡稳定性极限分析[J]. 岩土力学, 2022, 43(6): 1493-1502.
[13] 仉文岗, 顾鑫, 刘汉龙, 张青, 王林, 王鲁琦, . 基于贝叶斯更新的非饱和土坡参数概率 反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112-1122.
[14] 舒进辉, 马强, 周凤玺, 李强, . 非饱和土地基中P1波通过波阻板的传播特性研究[J]. 岩土力学, 2022, 43(4): 1135-1146.
[15] 许韬, 白冰, . 考虑循环温度驱动的土−水特征曲线滞后模型[J]. 岩土力学, 2022, 43(12): 3393-3402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .