岩土力学 ›› 2023, Vol. 44 ›› Issue (8): 2221-2228.doi: 10.16285/j.rsm.2022.1417

• 基础理论与实验研究 • 上一篇    下一篇

微纳米Ca(OH)2加固遗址土室内试验研究

郭青林1, 2,李平1, 3,张博2, 3,裴强强2, 3,王彦武2,水碧纹2,孙满利1   

  1. 1. 西北大学 文化遗产学院 中国-中亚人类与环境“一带一路”联合试验室 文化遗产研究与保护技术教育部重点试验室,陕西 西安 710127; 2. 敦煌研究院 甘肃省敦煌文物保护研究中心,甘肃 敦煌 736200;3. 甘肃莫高窟文化遗产保护设计咨询有限公司,甘肃 敦煌 736200
  • 收稿日期:2022-09-13 接受日期:2022-12-05 出版日期:2023-08-21 发布日期:2023-08-21
  • 通讯作者: 李平,男,1995年生,硕士研究生,主要从事土遗址保护方面的研究。E-mail:liping@stumail.nwu.edu.cn E-mail:3037582@qq.com
  • 作者简介:郭青林,男,1976年生,博士,敦煌研究院研究员、西北大学兼职教授,从事石窟寺与土遗址保护方面的研究。
  • 基金资助:
    国家重点研发计划(No.2020YFC1522200);敦煌市科技计划项目(No. 2023CA1009)。

Laboratory test of micro-nano Ca(OH)2 reinforced earthen sites

GUO Qing-lin1, 2, LI Ping1, 3, ZHANG Bo2, 3, PEI Qiang-qiang2, 3, WANG Yang-wu2, SHUI Bi-wen2, SUN Man-li1   

  1. 1. Key Laboratory of Cultural Heritage Research and Conservation, China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, School of Culture Heritage, Northwest University, Xi’an, Shaanxi 710127; 2. Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang Academy, Dunhuang, Gansu 736200, China; 3. Gansu Mogao Grottoes Cultural Heritage Protection Design Consulting Co., Ltd., Dunhuang, Gansu 736200, China
  • Received:2022-09-13 Accepted:2022-12-05 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Key Research and Development Program (2020YFC1522200) and the Dunhuang Science and Technology Program Project (2023CA1009).

摘要: 无机材料以兼容性强、耐久性好等特点被广泛应用于土遗址加固,特别疏松结构土遗址加固一直是学界关注的焦点,微纳米Ca(OH)2具有分子结构小、加固效果显著和耐久性好等特点。以世界文化遗产锁阳城为代表,制备密度为1.5 g/cm3的疏松土样,采用浓度为5%、7.5%和10%微纳米Ca(OH)2的悬浊液滴渗加固,通过透气性、色差、无侧限抗压强度和抗剪强度测试发现,透气性下降值均在2%以内,5%和7.5%微纳米Ca(OH)2加固后色差ΔEab*均小于4,在一定范围内可接受;其中用浓度为7.5%微纳米Ca(OH)2加固3次后抗压强度和抗剪强度均有提高,无侧限抗压强度增长率为9.8%,土的黏聚力增加了34%,内摩擦角提高了9°;土-水特征曲线表明,微纳米Ca(OH)2对土的体积收缩率具有较好的抑制作用。扫描电镜、X射线衍射和热重分析发现,微纳米Ca(OH)2渗透加固后,在碱性环境下发生了的物理化学反应,在物理层面主要通过填充、包裹和镶嵌等使得疏松体更加密实,化学层面主要通过氢氧化钙的碳酸化反应形成新的钙质胶结物,这是其强度提高的主要原因。研究表明,微纳米Ca(OH)2在土遗址防风化加固方面具有潜在应用价值。

关键词: 土遗址, 防风化材料, 文物保护, 室内测试

Abstract: Inorganic materials with strong compatibility and durability are widely used in the conservation of earthen sites, and those with especially loose structure has been the research focus of earthen sites reinforcement. Micro-nano Ca(OH)2 has a range of characteristics, including small molecular structure, significant reinforcement effect and good durability. Take the UNESCO world heritage site at Suoyang City as an example, we prepared the loose soil samples with the density of 1.5 g/cm3, then, the samples are enforced by micro-nano Ca(OH)2 suspension with concentration of 5%, 7.5% and 10%, respectively. Through the tests of air permeability, color difference, unconfined compressive strength and shear strength, it is found that the decrease value of air permeability is within 2%, and the color difference (ΔEab*) treated by 5% and 7.5% micro-nano Ca(OH)2 suspension is less than 4, to certain degree, which is acceptable. The compressive strength and shear strength are improved after three rounds of reinforcement using the suspension with concentration of 7.5%. Meanwhile, the unconfined compressive strength increases by 9.8%, and the cohesion of soil increases by 34%. The internal friction angle grows up by 9°. The soil-water characteristic curve shows that micro-nano Ca(OH)2 has a good inhibitory effect on the volumetric shrinkage of soil samples. The reinforcement mechanism is revealed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis. It is found a series of physicochemical reactions occurred in the alkaline environment after the treatment of micro-nano Ca(OH)2. From the physical perspective, loose samples are enhanced by filling, wrapping, and mosaic. In terms of chemical perspective, the carbonation of calcium hydroxide forms new calcareous cements, which is the primary reason of reinforcement. This study reveals that micro-nano Ca(OH)2 has potential for the anti-weathering and reinforcement of earthen sites.

Key words: earthen sites, weatherproof materials, preservation of cultural relics, laboratory test

中图分类号: 

  • TU 43
[1] 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603.
[2] 原鹏博, 朱磊, 钟秀梅, 董兰凤, 谌文武, . 酶诱导碳酸钙沉淀加固遗址土动力特性试验研究[J]. 岩土力学, 2022, 43(12): 3385-3392.
[3] 崔凯, 于翔鹏, 裴强强, 汪小海, 许鹏飞, . 注浆模式对土遗址裂隙修复浆−土界面 黏结性能影响研究[J]. 岩土力学, 2021, 42(6): 1501-1511.
[4] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[5] 和法国, 吕燃, 粟华忠, 周瑾, 张景科, 王南, . SH材料加固夯筑遗址土耐久性试验及机理研究[J]. 岩土力学, 2019, 40(S1): 297-307.
[6] 崔凯, 黄井镜, 谌文武, 王东华, 韩宁, . 生石灰为掺料的土遗址锚固浆液选型和性能研究[J]. 岩土力学, 2019, 40(6): 2183-2191.
[7] 张景科, 单婷婷, 王玉超, 王 南, 樊 孟, 赵林毅, . 土遗址锚固土体-浆体(CGN+C)界面力学性能[J]. 岩土力学, 2019, 40(3): 903-912.
[8] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
[9] 谌文武, 张起勇, 刘宏伟, . SH固土剂在遗址土中的渗透注浆扩散规律[J]. 岩土力学, 2019, 40(2): 429-435.
[10] 崔凯, 冯飞, 谌文武, 汪小海, 程富强, . 生石灰为掺料的土遗址裂隙注浆浆液结石体 力学兼容性研究[J]. 岩土力学, 2019, 40(12): 4627-4636.
[11] 裴强强,王旭东,郭青林,张 博,赵国靖,赵建忠, . 干旱环境下土遗址夯补支顶加固变形机制室内试验研究[J]. , 2018, 39(8): 2755-2764.
[12] 崔 凯,王东华,谌文武,任晓峰,刘 建,杨 光,. 基于改性糯米灰浆的3种锚杆锚固性能对比研究[J]. , 2018, 39(2): 498-506.
[13] 陈 毅,张虎元,杨 龙, . 遗址土劣化进程中微观结构变化的类比研究[J]. , 2018, 39(11): 4117-4124.
[14] 张虎元 ,张学超 ,陈晓宁,. 不同遗址土的热物理参数研究[J]. , 2014, 35(S1): 57-62.
[15] 王彦兵 ,王思敬 ,李 黎 ,王旭东 ,李最雄,. 硅酸钾对遗址土的渗透加固机制及改进特性研究[J]. , 2014, 35(3): 696-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[3] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[4] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[5] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[6] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[7] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[8] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[9] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[10] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .