岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 427-435.doi: 10.16285/j.rsm.2022.1463

• 基础理论与实验研究 • 上一篇    下一篇

基于强夯应力波传播模型的夯击参数研究

刘文俊1,李岳1,蔡靖2, 1,戴轩1,水伟厚3,董炳寅4   

  1. 1. 中国民航大学 交通科学与工程学院,天津 300300;2. 民航机场建设工程有限公司 民航机场智能建造与工业化工程技术研究中心,天津 300456;3. 大地巨人(北京)工程科技有限公司,北京 100176;4. 大地巨人(广东)工程科技有限公司,广东 广州 510700
  • 收稿日期:2022-09-21 接受日期:2022-12-23 出版日期:2023-11-16 发布日期:2023-11-19
  • 通讯作者: 蔡靖,女,1975年生,博士,教授,主要从事机场工程与地基处理等方面的研究。E-mail: caijing75@163.com E-mail:13991549712@163.com
  • 作者简介:刘文俊,男,1998年生,硕士研究生,主要从事特殊土地基处理技术方面的研究。
  • 基金资助:
    天津市自然科学基金(No. 21JCQNJC00850);中央高校基金项目(No. 3122022043);天津市研究生科研创新项目(No. 2021YJSS133)。

Selection of tamping parameters based on propagation model of dynamic compaction-induced stress wave

LIU Wen-jun1, LI Yue1, CAI Jing2, 1, DAI Xuan1, SHUI Wei-hou3, DONG Bing-yin4   

  1. 1. School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; 2. Engineering Research Center of Intelligent Construction and Industrialization, China Airport Construction Corporation, Tianjin 300456, China; 3. Beijing Dadi Geotechnical Engineering Company, Beijing 100176, China; 4. Guangdong Dadi Geotechnical Engineering Company, Guangzhou, Guangdong 510700, China
  • Received:2022-09-21 Accepted:2022-12-23 Online:2023-11-16 Published:2023-11-19
  • Supported by:
    This work was supported by the Natural Science Funds Project of Tianjin (21JCQNJC00850), the Central University Fund Project (3122022043) and the Graduate Research Innovation Project of Tianjin (2021YJSS133).

摘要: 夯击参数比选是决定强夯地基处理经济性与加固效果的关键环节,当前主要依靠试夯结果确定停夯标准及参数调整。对此,建立了非辐射平面发射型一维强夯应力波传播模型,推导了单次夯击作用下波阵面应力沿土体深度的分布,揭示了地基压密变形、剪切波横向扩散和土体阻尼特性3种独立因素耗能作用的机制,基于应力衰减规律探讨了加固深度分层标准、应力波传播与能量耗散过程。结果表明:当静接地压力由40.8 kPa增至122.3 kPa时,地基加固深度显著增加,同等静接地压力下提高落距和增大夯锤半径对地基加固效果提升有限;采用偏重锤低落特征的夯击参数组合对应力波向土体深层传播更为有利;随着土体深度增加,应力波时程依次呈现冲击加固、振动密实与弹性振动特征,冲击加固区深度可参照5%体应变等值线包络地基范围估计;依据任意拉格朗日-欧拉法仿真结果对单次强夯理论解进行修正,得出了连续夯击地基加固深度计算流程;通过对比现场检测结果可优化夯击参数,提高施工效率及经济性。

关键词: 强夯, 应力波, 夯击参数, 任意拉格朗日-欧拉法, 参数比选

Abstract: The selection of tamping parameters can be the vital procedure for economic efficiency and ground reinforcement effect of dynamic compaction treatment. At present, stop-tamping criterion and parameters adjustment mostly depended on in-situ test result of dynamic compaction. In this study, a one-dimensional stress wave propagation model with non-radial plane emission was developed; the distribution of wavefront stress along soil depth under single tamping was derived; the mechanism of three independent energy-consuming factors, including compression deformation of foundation soil, lateral diffusion of shear wave and soil damping, were revealed; and classification standard for ground reinforcement depth (GRD) was proposed based on the rule of stress attenuation, which was then used to characterize stress wave propagation and energy dissipation process. Research results indicate that GRD can be notably increased as static ground pressure increase from 40.8 kPa to 122.3 kPa, while excessive increase of drop height and tamper radius has limited influence on GRD under equivalent static ground pressure conditions. Parameters combination of dynamic compaction characterized by heavier-tamper and lower-drop height, can be more beneficial to stress wave propagation deeper. Time-history curves of stress wave show various characteristics at different depths, including shock reinforcement, vibration compaction and elastic vibration. The shock reinforcement depth can be estimated by using the result of ground area enveloped by 5% volumetric strain isogram. The theoretical solution under single tamping is modified by using arbitrary Lagrange-Euler method-based simulation results, then calculation procedure of GRD under continuous tamping can be derived. Therefore, dynamic compaction parameters can be optimized through comparison with in-situ test results so as to improve construction efficiency and economy.

Key words: dynamic compaction, stress wave, tamping parameters, arbitrary Lagrange-Euler method, parameters comparison

中图分类号: 

  • TU 472
[1] 金解放, 张雅晨, 刘康, 张睿, 李云浩, . 梯度应力对红砂岩应力波传播特性的影响研究[J]. 岩土力学, 2023, 44(4): 952-964.
[2] 柴少波, 周涛, 田威, 井彦林, 史杰辉. 考虑岩体应力的结构面中应力波传播特性分析[J]. 岩土力学, 2022, 43(S1): 184-192.
[3] 常聚才, 齐潮, 殷志强, 史文豹, 贺凯, 吴昊原, . 动载作用下端锚锚固体力学响应特征研究[J]. 岩土力学, 2022, 43(12): 3294-3304.
[4] 刘鑫, 许宏发, 范鹏贤, 耿汉生, 莫家权, 王德荣. 围压下岩石填充裂隙对应力波衰减规律的试验研究[J]. 岩土力学, 2021, 42(8): 2099-2108.
[5] 张雨霏, 李建春, 闫亚涛, 李海波, . 基于SHPB试验的粗糙节理面动态损伤特征研究[J]. 岩土力学, 2021, 42(2): 491-500.
[6] 唐国艺, 刘智, 刘争宏, 唐立军, 于永堂, 姜文, . 低能级强夯在安哥拉Quelo砂中的应用[J]. 岩土力学, 2019, 40(S1): 203-209.
[7] 窦锦钟, 邵雪莹, 廖晨聪, 陈锦剑, . 不同夯点布置形式下群夯加固效果研究[J]. 岩土力学, 2019, 40(S1): 527-534.
[8] 魏久淇, 吕亚茹, 刘国权, 张 磊, 李 磊, . 钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(1): 191-198.
[9] 王斐笠,王述红,修占国. 应力波扰动下结构面的应力量化及强度表征[J]. , 2018, 39(8): 2844-2850.
[10] 庞龙龙 ,徐学锋 ,司 亮 ,张 浩 ,李正可 , . 开采上保护层对巨厚砾岩诱发冲击矿压的减冲机制分析[J]. , 2016, 37(S2): 120-128.
[11] 姚仰平,张北战. 基于体应变的强夯加固范围研究[J]. , 2016, 37(9): 2663-2671.
[12] 陈俊桦 ,张家生,李新平,. 基于岩石爆破损伤理论的预裂爆破参数研究及应用[J]. , 2016, 37(5): 1441-1450.
[13] 文思强,李云鹏,马 康. 强夯能量利用率反演及加固影响范围研究[J]. , 2015, 36(S2): 185-192.
[14] 刘 晔,姜福兴,冯 宇. 巷道诱发型冲击地压的发生机制及危险性分析[J]. , 2015, 36(S2): 201-207.
[15] 王 威,王建华. 高能强夯下地基土体的变形特性[J]. , 2015, 36(S1): 315-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王新志,汪 稔,孟庆山,刘晓鹏. 钙质砂室内载荷试验研究[J]. , 2009, 30(1): 147 -151 .
[2] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[3] 刘 杰,李建林,宛良朋,蔡 健,肖 蕾. 基于卸荷和抗震分析理论的大岗山坝肩边坡锚固优化研究[J]. , 2012, 33(S2): 275 -282 .
[4] 张敏静 ,罗 强 ,詹学启 ,张 良 . 高速铁路穿透型CFG桩复合地基沉降计算修正系数分析[J]. , 2013, 34(2): 519 -525 .
[5] 佘跃心 ,刘汉龙 ,高玉峰 . 计算相关距离的神经网络方法[J]. , 2003, 24(5): 719 -722 .
[6] 赵 颖 ,郭恩栋 ,王 琼 ,刘 智 . 走滑断层地震地表断裂位错估计方法研究[J]. , 2013, 34(5): 1403 -1408 .
[7] 彭长学 ,杨光华 . 软土e-p曲线确定的简化方法及在非线性沉降计算中的应用[J]. , 2008, 29(6): 1706 -1710 .
[8] 张宗亮 ,贾延安 ,张丙印 . 复杂应力路径下堆石体本构模型比较验证[J]. , 2008, 29(5): 1147 -1151 .
[9] 夏元友 ,张亮亮 ,王克金 . 地铁盾构穿越建筑物施工位移的数值分析[J]. , 2008, 29(5): 1411 -1414 .
[10] 卢海林,赵志民,方 芃,姜忻良. 盾构法隧道施工引起土体位移与应力的镜像分析方法[J]. , 2007, 28(1): 45 -50 .