岩土力学 ›› 2023, Vol. 44 ›› Issue (12): 3424-3434.doi: 10.16285/j.rsm.2022.1960

• 基础理论与实验研究 • 上一篇    下一篇

土工格室加筋土挡墙静载模型试验研究

屈畅姿1,李梦竹1,刘泽2,魏丽敏3,周详详1,曹峥1   

  1. 1. 湘潭大学 土木工程学院,湖南 湘潭 411105; 2. 湖南科技大学 土木工程学院,湖南 湘潭 411201;3. 中南大学 土木工程学院,湖南 长沙 410075
  • 收稿日期:2022-12-16 接受日期:2023-04-23 出版日期:2023-12-20 发布日期:2023-12-21
  • 通讯作者: 魏丽敏,女,1965年生,博士,教授,博士生导师,主要从事路基工程和桩基工程等方面的研究。E-mail: lmwei@csu.edu.cn E-mail:quchangzi83@xtu.edu.cn
  • 作者简介:屈畅姿,女,1983年生,博士,副教授,主要从事交通岩土工程方面的研究。
  • 基金资助:
    湖南省教育厅优秀青年科学研究项目(No.22B0146);国家自然科学基金(No.51508489,No.51878671)

Model experimental study on geocell-reinforced soil retaining wall under static loading

QU Chang-zi1, LI Meng-zhu1, LIU Ze2, WEI Li-min3, ZHOU Xiang-xiang1, CAO Zheng1   

  1. 1. College of Civil Engineering, Xiangtan University, Xiangtan, Hunan 411105, China; 2. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 3. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China
  • Received:2022-12-16 Accepted:2023-04-23 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the Scientific Research Project for Outstanding Youth of Hunan Provincial Education Department of China (22B0146) and the National Natural Science Foundation of China (51508489, 51878671).

摘要: 土工格室加筋土挡墙因其结构轻巧、稳定性高而具有广阔的工程应用前景,均匀长加筋面板式格室挡墙性能尤为良好,但目前相关的试验研究尚少。以拟建的长加筋面板式土工格室挡墙为对象,开展了竖向分级静载作用下的室内模型试验,对挡墙的变形、墙内竖向应力以及格室加筋层应变进行了测试和分析,探讨了均匀长格室层的加筋作用机制。结果表明:竖向荷载作用下,挡墙上部填土沿水平方向产生了中间大、墙面处小的不均匀沉降,埋于其中的格室加筋层因受弯而产生“网兜”效应,合并格室较强的侧限作用,致使部分竖向应力转化为格室的水平应力,多层格室的水平向转化作用使得挡墙底部的竖向应力明显减小,沉降沿水平方向亦趋于均匀分布。挡墙上部的翘起变形使得加筋层对墙面产生向下的拉力,故墙面竖向位移随荷载的增加而迅速增长;且对墙面产生向内收缩的作用,有效限制了上部墙面的水平位移,0.375H~0.75H(H为总墙高)范围内格室墙面水平位移较大,最大值出现在0.375H高处。加筋层应变沿水平方向的分布形式受填筑高度和荷载的影响较小,竖向荷载作用下均匀长加筋面板式格室挡墙的潜在破裂面的剖面线形为距墙踵一定距离的竖向缓变曲线。该成果可为此类土工格室加筋土挡墙的实践应用提供有价值的设计、施工参考。

关键词: 加筋土挡墙, 土工格室, 模型试验, 变形, 格室应变

Abstract: For the advantages of light weight and high stability, the geocell-reinforced soil retaining walls will be widely used in the retaining construction in the near future. The performance of the facing-type geocell retaining wall reinforced by extending geocell layers with uniform spaces over the full height of the wall (FE-type), is better than other types of geocell retaining structures. However, the experimental researches on the FE-type geocell retaining walls are limited at present. The model test in this study was performed on an FE-type geocell retaining wall to examine the mechanical characteristics in terms of deformations and vertical stresses of the retaining wall under vertical static load. The strains of the extended geocell layers were examined and the effect mechanism was also discussed. Results show that the differential settlements of upper fillers of the retaining wall present as larger in the middle than that approaching the face-plate. The tuck net effect of the geocell layers inside the upper fillers owing to bending, and the strong lateral restriction of the geocell layers have transformed parts of vertical forces into the horizontal forces exerting on the geocell layer. Through the transformations of several geocell layers, the vertical stresses significantly decrease and the differential settlements almost disappear at the bottom of the retaining wall. Due to the warping deformation, the upper geocell layers exert downward tensions and inward contractions on the upper face-plates of the retaining wall. Consequently, the vertical displacements of the face-plates increase rapidly with increasing loads. And it also effectively limits the increasing of the horizontal displacements of the face-plate. The horizontal displacements of the face-plates ranging from 0.375H to 0.75H (where H is the height of the retaining wall) are larger than other parts, and the maximum displacement locates at the 0.375H height. The influences of the back filling height and loads on the distribution of the geocell layers strains along the horizontal direction are week. The potential failure surface of the FE-type geocell reinforced retaining wall resembles the curved shape that changes slowly along the vertical direction without penetrating the face-plates. The findings could provide valuable and practical references for the design and construction of the FE-type geocell-reinforced soil retaining wall.

Key words: reinforced-soil retaining wall, geocell, model test, deformation, strain of geocell layer

中图分类号: 

  • TU476+.4
[1] 张季如, 陈敬鑫, 王 磊, 彭伟珂. 三轴剪切过程中排水条件对钙质砂颗粒破碎、变形和强度特性的影响[J]. 岩土力学, 2024, 45(2): 375-384.
[2] 赵程斌, 骆亚生, 范全, 孟智田, 孙哲. 基于触发式黏塑性元件的黏性土黏弹塑性动本构模型[J]. 岩土力学, 2024, 45(2): 502-510.
[3] 江权, 刘强, . 地下洞室变形破坏物理模拟的力学相似畸变映射原理与实例分析[J]. 岩土力学, 2024, 45(1): 20-37.
[4] 李玉萍, 陈嘉瑞, 施建勇, 樊宝云, . 热−力耦合作用下垃圾土体积变形特性和模型研究[J]. 岩土力学, 2024, 45(1): 49-58.
[5] 张丹, 邱子源, 金伟, 张梓航, 罗玉龙, . 粗粒土渗透及渗透变形试验缩尺方法研究[J]. 岩土力学, 2024, 45(1): 164-172.
[6] 朱姝, 阙相成, 朱珍德, 朱其志, . 考虑截面规则性的柱状节理岩体变形及强度特性研究[J]. 岩土力学, 2024, 45(1): 213-225.
[7] 屈小磊, 张云开, 陈悠然, 陈悠扬, 戚承志, . 耦合渗流-变形的数值流形法裂隙岩质 边坡稳定性分析[J]. 岩土力学, 2024, 45(1): 313-324.
[8] 张治国, 毛敏东, 王卫东, PAN Y T, 吴钟腾, . 降雨影响下基坑开挖施工对邻近基桩变形响应分析[J]. 岩土力学, 2023, 44(增刊): 27-49.
[9] 张达锦, 肖桂元, 武岳, 徐光黎, 刘伟, . 重金属Cu2+驱动下红黏土土体压缩变形机制[J]. 岩土力学, 2023, 44(增刊): 127-133.
[10] 李英杰, 张亮, 王炳乾, 刘圣鑫. 基于CT扫描和数字体相关法的页岩 各向异性三维变形场特征研究[J]. 岩土力学, 2023, 44(增刊): 134-144.
[11] 王斌, 李洁涛, 王佳俊, 陈鹏林, . 强降雨诱发堆积体滑坡模型试验研究[J]. 岩土力学, 2023, 44(增刊): 234-248.
[12] 徐超, 金宇, 杨阳, 孟亚, . 路面荷载下包裹式加筋土桥台变形的试验研究[J]. 岩土力学, 2023, 44(增刊): 410-418.
[13] 杨凯丞, 吴曙光, 廖海成, 张辉, . 双锚杆受力机制分析及模型试验研究[J]. 岩土力学, 2023, 44(增刊): 495-503.
[14] 银吉超, 白晓宇, 张亚妹, 闫楠, 王永洪, 张明义, . 一种模拟原状泥岩动力打桩与静载试验 装置的研制及应用[J]. 岩土力学, 2023, 44(增刊): 698-710.
[15] 邹维列, 樊科伟, 张攀, 韩仲, . 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学, 2023, 44(9): 2537-2544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[2] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[3] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[4] 黄平路,陈从新,肖国峰,林 健. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. , 2009, 30(10): 3020 -3024 .
[5] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[6] 冷伍明,杨 奇,刘庆潭,聂如松. 软基高桥台桩-土相互作用计算新方法研究[J]. , 2009, 30(10): 3079 -3085 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[9] 定培中,周 密,张 伟. 混凝土浇筑施工对穿黄隧洞衬砌垫层渗透性影响试验研究[J]. , 2009, 30(10): 3159 -3162 .
[10] 刘 晓,唐辉明,罗红明,陈守义. 对滑坡防治工程相关规范中渗流问题的研究[J]. , 2009, 30(10): 3173 -3180 .