岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2537-2544.doi: 10.16285/j.rsm.2023.0488

• 基础理论与实验研究 • 上一篇    下一篇

土工泡沫减压膨胀土挡墙侧向压力及影响因素分析

邹维列1,樊科伟2,张攀1,韩仲1   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 43007;2. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098
  • 收稿日期:2023-04-20 接受日期:2023-06-18 出版日期:2023-09-11 发布日期:2023-09-02
  • 通讯作者: 樊科伟,男,1991年生,博士,博士后,主要从事土工合成材料应用原理等方面的科研工作。E-mail: fkwhhu@163.com E-mail:zwilliam@whu.edu.cn
  • 作者简介:邹维列,男,1970年生,博士,教授,从事非饱和土特性、土工合成材料应用原理等方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金项目(No.51979206);国家重点研发计划(No.2019YFC1509800);江苏省卓越博士后计划(No.2023ZB830);湖北省自然科学基金(No.2021CFB389)

Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors

ZOU Wei-lie1, FAN Ke-wei2, ZHANG Pan1, HAN Zhong1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2023-04-20 Accepted:2023-06-18 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979206), the National Key Research and Development Project (2019YFC1509800), Jiangsu Province Excellent Postdoctoral Program (2023ZB830) and Hubei Provincial Natural Science Foundation (2021CFB389).

摘要: 墙后膨胀性填土在吸水膨胀后,将对挡墙产生较大的侧向压力,严重时可能引起挡墙失稳。在墙背与膨胀性填土之间铺设可发性聚苯乙烯土工泡沫(expanded polystyrene geofoam,简称EPS)缓冲层,利用EPS的高压缩特性,为填土的侧向变形提供空间,可有效减小作用于挡墙的侧向压力。为了探明墙后铺设EPS的膨胀土挡墙在膨胀土浸润至饱和状态时,侧向压力沿墙高的分布规律及影响因素,开展了EPS减压膨胀土挡墙模型试验和相应的理论分析。结果表明:(1)当膨胀土浸润至饱和时,铺设密度为12 kg/m3的EPS可减小膨胀土挡墙约50%的总侧向压力;(2)无EPS的膨胀土挡墙的侧向压力沿墙深逐渐增大,而含EPS的膨胀土挡墙的侧向压力沿墙深基本相同;(3)EPS厚度越大,密度越小,对挡墙侧向压力的减压效果越好。

关键词: 挡土墙, 膨胀土, 土工泡沫, 模型试验, 侧向压力

Abstract: Expansive soils, known for their considerable swelling pressure upon wetting, have been identified as potential instigators of instabilities in retaining walls. The incorporation of expanded polystyrene geofoam (EPS) inclusions between the retaining wall and the backfilled expansive soil has been found to considerably mitigate the lateral pressure on the wall, which results from the water absorption and expansion of the expansive soil. This substantial reduction is due to the impressive compressibility of the EPS inclusion. To explore the implications of the EPS inclusion on the lateral pressure distribution on retaining walls, and to analyze the factors influencing this pressure, a comprehensive model test and a corresponding lateral pressure theoretical analysis were performed. The results show that (1) the total lateral pressure acting on the retaining wall was reduced by about 50% by the EPS inclusion with a density of 12 kg/m3 when the expansive soil is saturated in the model test; (2) in the absence of the EPS inclusion, the lateral pressure distribution acting on the retaining wall escalated along its depth, whereas with the EPS inclusion, it remained largely uniform throughout the wall’s depth; and (3) the lateral pressure reduction due to the EPS inclusion was enhanced with increasing thickness and decreasing density of the EPS inclusion.

Key words: retaining wall, expansive soils, expanded polystyrene geofoam, model test, lateral pressure

中图分类号: 

  • TU473
[1] 王斌, 李洁涛, 王佳俊, 陈鹏林, . 强降雨诱发堆积体滑坡模型试验研究[J]. 岩土力学, 2023, 44(增刊): 234-248.
[2] 杨凯丞, 吴曙光, 廖海成, 张辉, . 双锚杆受力机制分析及模型试验研究[J]. 岩土力学, 2023, 44(增刊): 495-503.
[3] 银吉超, 白晓宇, 张亚妹, 闫楠, 王永洪, 张明义, . 一种模拟原状泥岩动力打桩与静载试验 装置的研制及应用[J]. 岩土力学, 2023, 44(增刊): 698-710.
[4] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[5] 刘欣, 沈宇鹏, 刘志坚, 王炳禄, 刘越, 韩昀希. 地下水流速对地铁联络通道冻结壁形成过程影响的模型试验[J]. 岩土力学, 2023, 44(9): 2667-2678.
[6] 曾召田, 崔哲旗, 孙德安, 姚志, 潘斌, . 南宁膨胀土持水性能的温度效应及微观机制[J]. 岩土力学, 2023, 44(8): 2177-2185.
[7] 谢康, 苏谦, 陈晓斌, 刘宝, 王武斌, 王迅, 邓志兴, . 无砟轨道聚氨酯碎石防水联结层单元模型试验研究[J]. 岩土力学, 2023, 44(8): 2308-2317.
[8] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[9] 张院生, 雷云超, 强小俊, 吴东东, 王东坡, 王计华, . 多排微型桩框架结构加固边坡离心模型试验研究[J]. 岩土力学, 2023, 44(7): 1983-1994.
[10] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[11] 马鹏杰, 芮瑞, 曹先振, 夏荣基, 王曦, 丁锐恒, 孙天健, . 微型桩加固长大缓倾裂隙土边坡模型试验[J]. 岩土力学, 2023, 44(6): 1695-1707.
[12] 彭文明, 张雪东, 夏勇, . 软弱覆盖层上土石坝动力离心模型试验研究[J]. 岩土力学, 2023, 44(6): 1771-1778.
[13] 冷先伦, 王川, 盛谦, 宋文军, 陈健, 张占荣, 陈菲, . 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究[J]. 岩土力学, 2023, 44(5): 1283-1294.
[14] 宋洋, 王宏帅, 李昂, 王鑫, 肖作明, 苑强, . 富水粉细砂层盾尾同步注浆浆液渗透-压密扩散机制研究[J]. 岩土力学, 2023, 44(5): 1319-1329.
[15] 王力, 南芳芸, 王世梅, 陈勇, 李小伟, 范志宏, 陈玙珊, . 三峡库区降雨型滑坡入渗特征及变形机制——基于一维和二维模型试验研究[J]. 岩土力学, 2023, 44(5): 1363-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .