岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 417-432.doi: 10.16285/j.rsm.2023.0116

• 基础理论与实验研究 • 上一篇    下一篇

考虑温度变化下三层复合衬垫中重金属污染物一维运移理论模型

江文豪1, 2, 3,冯晨1, 2, 3,李江山1, 3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国科学院武汉岩土力学研究所 污染泥土科学与工程湖北省重点实验室,湖北 武汉 430071
  • 收稿日期:2023-02-06 接受日期:2023-12-01 出版日期:2024-02-11 发布日期:2024-02-06
  • 通讯作者: 李江山,男,1987年生,博士,研究员,主要从事污染场地工程修复和固废资源化方面的研究。E-mail: jsli@whrsm.ac.cn
  • 作者简介:江文豪,男,1996年生,博士研究生,主要从事土体固结和污染物运移耦合方面的研究。Geo_Jiang2020@163.com
  • 基金资助:
    国家重点研发计划(No. 2019YFC1804002)

Theoretical model for one-dimensional transport of heavy metal contaminants in a triple-layer composite liner considering temperature change

JIANG Wen-hao1, 2, 3, FENG Chen1, 2, 3, LI Jiang-shan1, 3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2023-02-06 Accepted:2023-12-01 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2019YFC1804002).

摘要: 针对考虑温度变化下由土工膜(geomembrane,简称GM)+土工复合膨润土衬垫(geosynthetic clay liner,简称GCL)+ 压实黏土衬垫(compacted clay liner,简称CCL)组成的3层复合衬垫中重金属污染物一维运移问题,基于相关假定发展得到了热传导与重金属污染物运移的控制方程,并建立了相应理论模型。通过有限差分,对所建理论模型进行了数值求解。随后,开展了与试验结果、解析解计算结果以及其他数值解计算结果的对比分析,验证了该模型的合理性。最后,以Cd2+为例,分析和讨论了不同因素对运移规律的影响。结果表明,上部温度升高会使复合衬垫中Cd2+的运移通量和底部浓度增大,但会使其上部浓度降低。热扩散效应对运移行为的影响会随Soret系数ST的增大而变显著,当ST为0.001、0.005、0.01、0.05、0.1 K–1时,所定义的击穿时间tb依次为37.9、37.2、36.4、31.2、26.5 a。GCL和CCL最大吸附量的增大均会使tb近似线性增加,且在一定渗沥液水头hb下,tb随GCL和CCL厚度的增大呈线性增大趋势。此外,当hb从0.5 m增大到1.0 m时,tb平均降低了8.33 a。在工程实践中,可结合GCL和CCL的吸附性能和厚度来设计复合衬垫,同时应考虑温度变化对阻隔效果的影响。

关键词: 温度变化, 热传导, 重金属污染物运移, 3层复合衬垫, 理论模型, 击穿时间

Abstract: Aiming at the problem of one-dimensional transport of heavy metal contaminants (HMCs) in a triple-layer composite liner composed of geomembrane (GM), geosynthetic clay liner (GCL) and compacted clay liner (CCL) under the consideration of temperature change, the governing equations for thermal conduction and HMCs transport are developed based on the relevant assumptions, and a corresponding theoretical model is established. The theoretical model constructed in this study is solved numerically by the finite difference. Subsequently, a comparative analysis with the experimental measurements, the analytical solution calculations and other numerical solution calculations is performed to validly verify the reasonableness of this model. Finally, the effects of different factors on the transport laws are analyzed and discussed using Cd2+ as an example. The results show that an increase in the upper temperature increases the transport flux and bottom concentration of Cd2+ in the composite liner, but decreases its upper concentration. The thermal diffusion effect on the transport behaviors becomes significant with an increasing in Soret coefficient ST, and the defined breakthrough times tb are 37.9, 37.2, 36.4, 31.2 and 26.5 a for ST of 0.001, 0.005, 0.01, 0.05 and 0.1 K–1 in this order. The increase in the maximum adsorption capacities of GCL and CCL leads to the approximately linear growth in tb, and under a certain leachate head hb, the tb almost increases linearly with the increase of GCL thickness and CCL thickness. Furthermore, as hb increases from 0.5 m to 1.0 m, the tb reduces by an average of 8.33 a. In engineering practice, the adsorption performance and thickness of both GCL and CCL can be combined to design a composite liner, where the influence of temperature variation on barrier effectiveness should be incorporated.

Key words: temperature change, thermal conduction, heavy metal contaminants transport, triple-layer composite liner, theoretical model, breakthrough time

中图分类号: 

  • X 53
[1] 贾朝军, 庞锐锋, 俞隽, 雷明锋, 李忠, . 基于离散元的岩石冻融损伤劣化机制研究[J]. 岩土力学, 2024, 45(2): 588-600.
[2] 刘德仁, 张转军, 王旭, 张艳丰, 安政山, 金芯, . 水蒸汽增湿重塑非饱和黄土地基现场应用参数研究[J]. 岩土力学, 2023, 44(S1): 73-82.
[3] 桂跃, 谢正鹏, 高玉峰, . 有机质对黏性土热传导系数的影响与机制[J]. 岩土力学, 2023, 44(S1): 154-162.
[4] 李江山, 江文豪, 冯晨, . 非等温分布条件下三层复合衬垫中有机污染物一维瞬态运移规律研究[J]. 岩土力学, 2023, 44(9): 2717-2731.
[5] 郑紫荆, 朱云海, 王巧, 谢海建, 陈赟, . 有机污染物在含土工膜复合隔离墙 和含水层系统的运移半解析模型[J]. 岩土力学, 2022, 43(2): 453-465.
[6] 吴珣, 施建勇, 章涛, 舒实, 李玉萍, 雷浩, . 基于Levenberg-Marquardt算法的 填埋场中降解产热参数反演研究[J]. 岩土力学, 2022, 43(2): 511-518.
[7] 胡云世, 徐云山, 孙德安, 陈波, 曾召田, . 温度对颗粒膨润土热传导特性的影响[J]. 岩土力学, 2021, 42(7): 1774-1782.
[8] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[9] 周洪福, 刘彬, . 考虑荷载方向效应的软硬相间层状岩体 综合变形模量取值研究[J]. 岩土力学, 2020, 41(9): 3066-3076.
[10] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[11] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[12] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[13] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能时效性试验研究[J]. 岩土力学, 2019, 40(11): 4324-4330.
[14] 王路君,艾智勇, . 非稳态热传导时层状路面体系的温度响应[J]. , 2018, 39(9): 3139-3146.
[15] 张 楠 ,夏胜全 ,侯新宇 , 王照宇,. 土热传导系数及模型的研究现状和展望[J]. , 2016, 37(6): 1550-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .