›› 2004, Vol. 25 ›› Issue (7): 1017-1022.

• 基础理论与实验研究 • 上一篇    下一篇

淤泥质软土在冲击荷载作用下孔压增长模式

孟庆山,汪 稔,陈 震   

  1. 中国科学院武汉岩土力学研究所 岩土力学重点实验室,湖北 武汉 430071
  • 收稿日期:2003-09-17 出版日期:2004-07-09 发布日期:2014-07-18
  • 作者简介:孟庆山,男,1974年生,博士,主要从事岩土力学和软基加固处理研究。
  • 基金资助:

    国家重点基础研究发展规划(973)项目(2002CB412704)和中国科学院武汉岩土力学研究所博士科研启动基金资助项目(Q220302)。

Pore water pressure mode of oozy soft clay under impact loading

MENG Qing-shan, WANG Ren, CHEN Zhen   

  1. Key Laboratory of Rock and Soil Mechanics, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2003-09-17 Online:2004-07-09 Published:2014-07-18

摘要: 通过室内淤泥质饱和软粘土的动力固结试验,考虑不同锤重和落距组合情况,对冲击荷载作用下饱和软粘土孔隙水压力的动态响应特征进行分析。试验结果表明,孔隙水压力和冲击击数之间是双曲线对应关系,高围压下冲击荷载激发的孔压随击数增长的速率快,超固结软土在冲击过程中孔压出现了负值。冲击荷载对土体产生的附加应力能导致孔压上升,孔压消散使得土体内有效应力增加,强度提高。对强夯施工中以孔压控制施工质量具有指导性意义。

关键词: 冲击荷载, 淤泥质粘土, 孔隙水压

Abstract: Based on the laboratory dynamic consolidation tests of saturated oozy soft clay under impact loading, the dynamic response characteristics of pore water pressure were analyzed. The tests considered different combination schemes between hammer weight and dropping height. The relationship between pore water pressure and impact times followed the hyperbola. The rate of increase of pore water pressure is faster with impact number under high confining pressure; and for the pore water pressure of over consolidation soft clay under impact loading, the negative value occurred. The subsidiary stress of impact loading causes the increasing of pore water pressure; and the effective stress is increased because of the dissipating of pore water pressure. It is highly important to control construction quality by monitoring pore water pressure during on-site dynamic consolidation.

Key words: impact loading, oozy soft clay, pore water pressure

中图分类号: 

  • TU 441+.8
[1] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[2] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[3] 尹晓萌, 晏鄂川, 刘旭耀, 李兴明, . 土体稳定性计算中地下水作用力探讨[J]. 岩土力学, 2019, 40(1): 156-164.
[4] 赵建军,余建乐,解明礼,柴贺军,李 涛,步 凡,蔺 冰,. 降雨诱发填方路堤边坡变形机制物理模拟研究[J]. , 2018, 39(8): 2933-2940.
[5] 张修照,巫尚蔚,张 超,杨春和,. 不同固结条件下尾矿动孔压演化规律[J]. , 2018, 39(3): 815-822.
[6] 王永洪,张明义,刘俊伟,白晓宇, . 超孔隙水压力对低塑性黏性土桩土界面抗剪强度的影响[J]. , 2018, 39(3): 831-838.
[7] 陈卫忠,马永尚,于洪丹,龚 哲,李香玲,. 泥岩核废料处置库温度-渗流-应力耦合参数敏感性分析[J]. , 2018, 39(2): 407-416.
[8] 刘忠玉, 张家超, 郑占垒, 关 聪. 考虑Hansbo渗流的二维Biot固结有限元分析[J]. 岩土力学, 2018, 39(12): 4617-4626.
[9] 刘世伟,盛 谦,朱泽奇,龚彦峰,崔 臻,李建贺,张善凯,. 隧道围岩内地下水渗流边界效应影响研究[J]. , 2018, 39(11): 4001-4009.
[10] 杨耀辉,陈育民,刘汉龙,李文闻,江 强, . 排水刚性桩群桩抗液化性能的振动台试验研究[J]. , 2018, 39(11): 4025-4032.
[11] 周正龙,陈国兴,赵 凯,吴 琪,马维嘉. 循环加载方向角对饱和粉土不排水动力特性的影响[J]. , 2018, 39(1): 36-44.
[12] 储昭飞,刘保国,张 磊,史小萌,. 孔隙砂岩三轴压缩排水试验及地层失水沉降计算[J]. , 2017, 38(S1): 225-232.
[13] 黄朝煊,王正中,方咏来,. 考虑漏气及井阻非线性的真空预压地基固结解析解[J]. , 2017, 38(9): 2574-2582.
[14] 张明义,白晓宇,高 强,王永洪,陈小钰,刘俊伟,. 黏性土中桩-土界面受力机制室内试验研究[J]. , 2017, 38(8): 2167-2174.
[15] 林 波,张 锋,冯德成,马宏岩,冯 鑫,. 冻融循环作用后饱和黏土的应变速率效应试验研究[J]. , 2017, 38(7): 2007-2014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖衡林,张晋锋,何 俊. 基于分布式光纤传感技术的流速测量方法研究[J]. , 2009, 30(11): 3543 -3547 .
[2] 邓代强,高永涛,吴顺川,余伟健. 复杂应力下充填体破坏能耗试验研究[J]. , 2010, 31(3): 737 -742 .
[3] 陈开圣,沙爱民. 压实黄土回弹模量试验研究[J]. , 2010, 31(3): 748 -752 .
[4] 杨永波,刘明贵1,张国华,李 祺. 邻近既有隧道的新建大断面隧道施工参数优化分析[J]. , 2010, 31(4): 1217 -1226 .
[5] 何思明,吴 永,李新坡. 嵌岩抗拔桩作用机制研究[J]. , 2009, 30(2): 333 -337 .
[6] 颜可珍,刘能源,夏唐代. 基于判别分析法的地震砂土液化预测研究[J]. , 2009, 30(7): 2049 -2052 .
[7] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286 -2290 .
[8] 陈智强,张永兴,周检英. 基于数字散斑技术的深埋隧道围岩岩爆倾向相似材料试验研究[J]. , 2011, 32(S1): 141 -148 .
[9] 史海莹 ,龚晓南 ,俞建霖 ,连 峰. 基于Hewlett理论的支护桩桩间距计算方法研究[J]. , 2011, 32(S1): 351 -0355 .
[10] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .