›› 2008, Vol. 29 ›› Issue (5): 1334-1338.

• 基础理论与实验研究 • 上一篇    下一篇

基于SURPAC的复杂地质体FLAC3D模型生成技术

罗周全,吴亚斌,刘晓明,刘望平,杨 彪   

  1. 中南大学 资源与安全工程学院,长沙 410083
  • 收稿日期:2006-07-26 出版日期:2008-05-10 发布日期:2013-07-24
  • 作者简介:罗周全,男,1966年生,教授,博士生导师,主要从事矿山开采数字化理论与技术的研究。
  • 基金资助:

    国家自然科学基金资助(No. 50490274)。

FLAC3D modeling for complex geologic body based on SURPAC

LUO Zhou-quan, WU Ya-bin, LIU Xiao-ming, LIU Wang-ping, YANG Biao   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2006-07-26 Online:2008-05-10 Published:2013-07-24

摘要: 针对FLAC3D软件在复杂地质体模型构建及单元网格划分等前处理问题上存在的不直观、工作量大等不足,提出了一种新型的基于SURPAC软件的直观、快速的FLAC3D模型生成技术。在利用SURPAC软件构建地质体块体模型的基础上,将模型以数据文件的形式输出,然后对输出的数据文件运用ACCESS数据库进行处理,形成FLAC3D命令流,再将命令流调入FLAC3D软件中执行,从而实现了FLAC3D的直观、快速建模。该建模方法在广西大厂铜坑矿的空区稳定性分析建模中得到了实际应用,结果表明该方法是完全可行的和有效的。

关键词: SURPAC, FLAC3D, 地质体, 模型

Abstract: Aiming at the disadvantages of FLAC3D modeling, such as the modeling process is not intuitionistic and mesh generation has great workload, a new kind of modeling method is proposed based on SURPAC software. On the base of building SURPAC block model of the complex geologic body, the SURPAC block model data in the manner of data file are exported and processing it using the Access database; and then the modeling order flow is generated and to run the order flow in FLAC3D to construct the FLAC3D model automatically and fleetingly. The new FLAC3D modeling method has been used in building the cavity stability analysis model of Tongken Copper mine in Guangxi Autonomous Region; and the result shows that the new modeling method is feasible and effective.

Key words: SURPAC, FLAC3D, geologic body, model

中图分类号: 

  • O 241
[1] 周辉, 陈珺, 张传庆, 朱勇, 卢景景, 姜玥, . 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学, 2019, 40(6): 2039-2049.
[2] 赵晓彦, 范宇飞, 刘亮, 蒋楚生, . 铁路台阶式加筋土挡墙潜在破裂面特征模型试验[J]. 岩土力学, 2019, 40(6): 2108-2118.
[3] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[4] 罗庆姿, 陈晓平, 袁炳祥, 冯德銮, . 柔性侧限条件下软土的变形特性及固结模型[J]. 岩土力学, 2019, 40(6): 2264-2274.
[5] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[6] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[7] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[8] 李文轩, 卞士海, 李国英, 吴俊杰, . 粗粒料接触面模型及其在土石坝工程中的应用[J]. 岩土力学, 2019, 40(6): 2379-2388.
[9] 何子露, 刘威, 何思明, 闫帅星, . 饱和松散堆积体快速滑动的剪胀效应 机制与过程模拟[J]. 岩土力学, 2019, 40(6): 2389-2396.
[10] 姜立春, 罗恩民, 沈彬彬, . 多自由度模型法的立体采空区群爆破 动力响应研究[J]. 岩土力学, 2019, 40(6): 2407-2415.
[11] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[12] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[13] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[14] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
[15] 李书兆, 王忠畅, 贾 旭, 贺林林, . 软黏土中张紧式吸力锚循环承载力简化计算方法[J]. 岩土力学, 2019, 40(5): 1704-1712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[2] 何思明,吴 永,李新坡. 嵌岩抗拔桩作用机制研究[J]. , 2009, 30(2): 333 -337 .
[3] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286 -2290 .
[4] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[5] 鄢治华,刘志伟,刘厚健. 黄河阶地上某电厂高边坡参数选取及其工程治理[J]. , 2009, 30(S2): 465 -468 .
[6] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[7] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[8] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[9] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[10] 孟 振,陈锦剑,王建华,尹振宇. 砂土中螺纹桩承载特性的模型试验研究[J]. , 2012, 33(S1): 141 -145 .