岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1638-1648.doi: 10.16285/j.rsm.2018.0224

• 基础理论与实验研究 • 上一篇    下一篇

基于西原模型的圆形隧道黏弹-黏塑性解析解

夏才初1,刘宇鹏1,吴福宝2,徐 晨1,邓云纲2   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
  • 收稿日期:2018-02-05 出版日期:2019-05-11 发布日期:2019-06-02
  • 作者简介:夏才初,男,1963年生,博士,教授,博士生导师,主要从事岩石力学、地下结构方面的研究工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 51778475,No. 41472248),中铁第四勘察设计院集团有限公司外委科技项目(No. 2017K74-1)

Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model

XIA Cai-chu1, LIU Yu-peng1, WU Fu-bao2, XU Chen1, DENG Yun-gang2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China
  • Received:2018-02-05 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51778475, 41472248) and the Technology Funding of China Railway Siyuan Survey and Design Group Company Limited (2017K74?1).

摘要: 基于西原模型,假设黏塑性体的偏应变张量的一阶导数与瞬态偏应力张量和稳态偏应力张量之差成正比,得到围岩黏塑性区的本构方程。采用拉普拉斯变换与逆变换,推导了圆形隧道黏弹-黏塑性解析解。当 时,该解退化成线弹性本构模型的解答;当 时,该解退化成理想弹塑性本构模型的解答。通过工程实例,分析了围岩位移场、应力场和黏塑性区半径随时间的变化规律。当支护力保持不变时,围岩不同位置位移、围岩黏塑性区半径将随时间增长而持续增大并趋于稳定;围岩黏弹-黏塑性特征对径向应力和黏弹性区切向应力影响较小,对黏塑性区切向应力影响较大,越靠近洞壁处,切向应力随时间变化越剧烈。此外,不同支护力作用下洞壁处的切向应力在支护初期均较大,因此应采用及时支护的策略;考虑到围岩黏弹-黏塑性特征对支护力的影响,建议采取让压支护技术以保证围岩和衬砌的稳定性。

关键词: 圆形隧道, 黏弹-黏塑性, 西原模型, 拉普拉斯变换, 解析解

Abstract: Based on Nishihara model, the first derivative of the deviatoric strain tensor of the viscoplastic element is assumed to be proportional to the difference between the transient deviatoric stress tensor and the steady-state deviatoric stress tensor. Thus, the constitutive equation of ground in viscoplastic region is obtained. The viscoelasto-viscoplastic solutions are derived by means of Laplace transform and Laplace reverse transform. While the time t is close to 0, the viscoelasto-viscoplastic solutions could be degenerated into linear elastic solutions. While the time t tends to infinity, the solutions could be simplified into perfectly elastic-plastic solutions. The time-dependent performances of ground displacement, ground stress and the plastic zone are investigated through an engineering example. When the support force remains constant, the ground displacement and the radius of plastic zone increase continuously with time and then tend to be stable. The influence of time-dependent behavior on the radial stress and tangential stress of viscoelastic region are not very obvious, while the influence on the tangential stress in viscoplastic region is much larger. For the rock mass around the wall in viscoplastic region, the tangential stress changes faster with time. In addition, the tangential stress of tunnel wall under different supporting forces is larger at the initial stage of support, so the strategy of timely support should be adopted. Considering the influence of ground time-dependent performances on the support, the ductile support is suggested to ensure the stability of the surrounding rock and lining.

Key words: circular tunnel, viscoelasto-viscoplastic, Nishihara model, Laplace transform, analytical solution

中图分类号: 

  • TU 452
[1] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[2] 朱彦鹏, 严紫豪, 朱轶凡. 微型钢管砂浆复合桩在土体中稳定性计算[J]. 岩土力学, 2020, 41(4): 1339-1346.
[3] 刘国钊, 乔亚飞, 何满潮, 樊勇, . 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学, 2020, 41(3): 923-932.
[4] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[5] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[6] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[7] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[8] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[9] 蒙宇涵, 陈征, 冯健雪, 李红坡, 梅国雄, . 初始孔压非均布下一维地基砂垫层优化研究[J]. 岩土力学, 2019, 40(12): 4793-4800.
[10] 黄朝煊. 塑料排水板处理地基非线性固结计算研究[J]. 岩土力学, 2019, 40(12): 4819-4827.
[11] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[12] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
[13] 吴 纲,孙红月,付崔伟,陈永珍,汤碧辉,. 软土虹吸排水完整井非稳定流模型及解析解[J]. , 2018, 39(9): 3355-3361.
[14] 吉恩跃,朱俊高,余 挺,金 伟,. 橡皮膜嵌入解析解及试验验证[J]. , 2018, 39(8): 2780-2786.
[15] 夏长青,胡安峰,崔 军,吕文晓,谢康和, . 饱和软土成层地基一维非线性固结解析解[J]. , 2018, 39(8): 2858-2864.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!