岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4793-4800.doi: 10.16285/j.rsm.2018.1899

• 基础理论与实验研究 • 上一篇    下一篇

初始孔压非均布下一维地基砂垫层优化研究

蒙宇涵1, 2, 3,陈征4,冯健雪5,李红坡1, 2, 3,梅国雄1, 2, 3   

  1. 1. 广西大学 工程防灾与结构安全教育部重点实验室,广西 南宁 530004;2. 广西大学 广西防灾减灾与工程安全重点实验室,广西 南宁 530004; 3. 广西大学 土木工程学院,广西 南宁 530004;4. 武汉大学 水工岩石力学教育部重点实验室,湖北 武汉 430072; 5. 贵州民族大学 建筑工程学院,贵州 贵阳 550025
  • 收稿日期:2018-10-12 出版日期:2019-12-11 发布日期:2020-01-04
  • 通讯作者: 梅国雄,男,1975年生,博士,教授,博士生导师,主要从事固结理论和土体基本性质等方面的研究。E-mail:meiguox@163.com E-mail:mengyuhan@st.gxu.edu.cn
  • 作者简介:蒙宇涵,男,1993年生,硕士研究生,主要从事软土地基固结理论方面的研究
  • 基金资助:
    国家自然科学基金(No.51578164,No.41672296,No.51878185);广西自然科学基金创新研究团队项目(No.2016GXNSFGA380008);长江学者(No.T2014273);八桂学者(No.2016A31);中国国家留学基金(No.201906660001)。

Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure

MENG Yu-han1, 2, 3, CHEN Zheng4, FENG Jian-xue5, LI Hong-po1, 2, 3, MEI Guo-xiong1, 2, 3   

  1. 1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China; 2. Guangxi Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning, Guangxi 530004, China; 3. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi, 530004, China; 4. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 5. Architectural Engineering College, Guizhou Minzu University, Guiyang, Guizhou, 550025, China
  • Received:2018-10-12 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51578164, 41672296, 51878185), the Innovative Research Team Program of Guangxi Natural Science Foundation (2016GXNSFGA380008), the Changjiang Scholars Program of the Ministry of Education of China (T2014273), the Bagui Scholars Program (2016A31) and the China Scholarship Council (CSC) (201906660001).

摘要: 针对吹填土地基水平排水砂垫层铺设深度优化问题,建立了初始孔压非均布下含砂垫层地基的一维固结模型,利用有限Fourier正弦变换法得出了超静孔压和地基整体平均固结度的解答并通过退化验证了解答的正确性。采用二分法分析了砂垫层的最优铺设深度随时间的演化规律,给出了砂垫层最优铺设深度与时间的关系图。研究表明:在固结初期,砂垫层宜放置在土中初始超静孔压较大的位置;在固结后期,砂垫层的最优设置深度为土体厚度的2/3(单面排水)或者1/2(双面排水)的位置。以预压地基平均固结度达到90%所需时间最短为例,当初始孔压倒三角形、正三角形与梯形分布时,单面排水条件下,应分别在0.52、0.72、0.62倍地基土深度处设置砂垫层;双面排水条件下,应分别在0.42、0.58、0.46倍地基土深度处设置砂垫层。最后通过算例分析了当地基土中砂垫层采用最优铺设深度时,与在中间位置铺设砂垫层、不设砂垫层的情况分别进行对比,当时间因子取0.09时,地基土平均固结度分别提高6%和54%。

关键词: 一维固结, 解析解, 砂垫层铺设深度优化, 初始孔压非均布

Abstract: Aiming at the optimal installation of horizontal drainage channels in hydraulic fill reclamation projects, one dimensional consolidation model with drainage channels installed in the foundation which considering the non-uniform distribution of initial excess pore water pressure was established. The analytical solution was obtained using the finite sine Fourier transform method. After verifying the correctness of the solution, the optimal position of the drainage channels under different time factors was solved and also given in the diagram form. The results show that drainage channels should be installed at the depth of soil layer with great excess pore pressure at the early stage of consolidation, and turn to 2H/3 (PTIB) or H/2 of soil (PTPB) at the later stage of consolidation (H is the depth of foundation). In order to save the consolidation time when the degree of consolidation reaches 90%, the optimal installation depth of horizontal drainage channels was 0.52H, 0.72H, and 0.62H for the single-drainage condition with the distribution of initial excess pore pressure in the inverted triangle, triangle and trapezoidal pattern, respectively. For the double-drainage condition, the optimal installation depth of horizontal drainage channels was 0.42H, 0.58H, and 0.46H, respectively. A practical example shows that the foundation with optimal depth of horizontal drainage channels has higher consolidation degree (6% and 54%) than that with drainage channels installed in 0.5H and without drainage channels installed.

Key words: one-dimensional consolidation, analytical solution, optimal installation of horizontal drainage channels, non-uniform distribution of initial excess pore water pressure

中图分类号: 

  • TU447
[1] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[2] 师旭超, 孙运德. 线性卸荷作用下软土超孔隙水压力 变化规律分析[J]. 岩土力学, 2020, 41(4): 1333-1338.
[3] 朱彦鹏, 严紫豪, 朱轶凡. 微型钢管砂浆复合桩在土体中稳定性计算[J]. 岩土力学, 2020, 41(4): 1339-1346.
[4] 刘国钊, 乔亚飞, 何满潮, 樊勇, . 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学, 2020, 41(3): 923-932.
[5] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[6] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[7] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[8] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[9] 童立红, 王 珏, 郭生根, 朱怀龙, 徐长节, . 变荷载下连续排水边界黏弹性地基 一维固结性状分析[J]. 岩土力学, 2019, 40(5): 1862-1868.
[10] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[11] 黄朝煊. 塑料排水板处理地基非线性固结计算研究[J]. 岩土力学, 2019, 40(12): 4819-4827.
[12] 吴 纲,孙红月,付崔伟,陈永珍,汤碧辉,. 软土虹吸排水完整井非稳定流模型及解析解[J]. , 2018, 39(9): 3355-3361.
[13] 吉恩跃,朱俊高,余 挺,金 伟,. 橡皮膜嵌入解析解及试验验证[J]. , 2018, 39(8): 2780-2786.
[14] 夏长青,胡安峰,崔 军,吕文晓,谢康和, . 饱和软土成层地基一维非线性固结解析解[J]. , 2018, 39(8): 2858-2864.
[15] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!