岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4819-4827.doi: 10.16285/j.rsm.2018.2030

• 基础理论与实验研究 • 上一篇    下一篇

塑料排水板处理地基非线性固结计算研究

黄朝煊   

  1. 浙江省水利水电勘测设计院,浙江 杭州 310002
  • 收稿日期:2018-11-05 出版日期:2019-12-11 发布日期:2020-01-04
  • 作者简介:黄朝煊,男,1983年生,硕士,高级工程师,主要从事水工结构及岩土工程设计与研究
  • 基金资助:
    浙江省基础公益研究计划项目(No.LGF18E090004);浙江省水利厅科技计划项目(No.RC1701)。

Research on nonlinear consolidation calculation of foundation treated with prefabricated vertical drains

HUANG Chao-xuan   

  1. Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, Zhejiang 310002, China
  • Received:2018-11-05 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the Zhejiang Basic Public Welfare Research Project(LGF18E090004) and the Zhejiang Water Resources Science and Technology Project(RC1701).

摘要: 针对目前国内外竖井地基非线性固结计算大多均采用近似等效法求解的不足,根据软土固结理论及数学理论推导,基于塑料排水板椭圆柱假定,推导了考虑地基土水平渗透系数、压缩模量随固结过程非线性变化影响下的排水板处理地基非线性固结控制方程,并利用数学中非线性微分方程理论,给出了非线性固结解析解。通过与Indraratna等非线性固结近似解对比分析,认为理想井下预压荷载越大(Nu越大),则Indraratna等近似法成果误差越大;且在Cc/Ck = 1.8、Nu = 5时Indraratna等近似解与该理想井非线性固结精确解析解误差高达16%,而解析解与精确数值解基本一致。最后通过Indraratna等典型工程案例验证分析,认为所得理论更符合工程实际,具有较好的工程应用价值。

关键词: 竖井地基, 塑料排水板, 椭圆柱理论, 非线性固结, 孔隙水压力, 井阻, 解析解

Abstract: Considering the deficiency of the nonlinear consolidation calculations of vertical drains foundations solved by approximate equivalent method, and based on the assumption of plastic drainage plate elliptical column, the horizontal permeability coefficient and compression of foundation soil are deduced using the soft soil consolidation theory. An analytical solution for the nonlinear consolidation is given by the nonlinear differential equation theory, which considered the drainage plate under the influence of compressive modulus with nonlinear variation of the consolidation process. By comparing with the results in Indraratna (2005), it is considered that the larger the ideal vertical drains foundations preload load (the larger Nu) is, the greater the error obtained by the approximation method in Indraratna et al. (2005), and this error can be up to 16% compared with the results in this paper when the Cc/Ck=1.8 and Nu=5. The results reveal that the analytical solution proposed in this paper is aligned with the exact numerical solution, and the theory suggested is more effective in engineering application.

Key words: vertical drains foundations, prefabricated vertical drain(PVD), elliptic cylindrical theory, nonlinear consolidation, pore water pressure, well resistance, analytical solution

中图分类号: 

  • TU 470
[1] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[2] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[3] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[4] 朱彦鹏, 严紫豪, 朱轶凡. 微型钢管砂浆复合桩在土体中稳定性计算[J]. 岩土力学, 2020, 41(4): 1339-1346.
[5] 刘国钊, 乔亚飞, 何满潮, 樊勇, . 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学, 2020, 41(3): 923-932.
[6] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[7] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[8] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[9] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[10] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[11] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[12] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[13] 夏才初, 刘宇鹏, 吴福宝, 徐 晨, 邓云纲, . 基于西原模型的圆形隧道黏弹-黏塑性解析解[J]. 岩土力学, 2019, 40(5): 1638-1648.
[14] 贺桂成, 廖家海, 李丰雄, 王 昭, 章求才, 张志军. 水饱和边坡夹层热-孔隙水-力耦合作用模型及应用[J]. 岩土力学, 2019, 40(5): 1663-1672.
[15] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!