›› 2009, Vol. 30 ›› Issue (4): 871-878.

• 基础理论与实验研究 • 上一篇    下一篇

干砂强夯动力特性的细观颗粒流分析

贾敏才1,2,王 磊1,周 健1,2   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092
  • 收稿日期:2008-10-17 出版日期:2009-04-10 发布日期:2011-01-30
  • 作者简介:贾敏才,男,1973年生,博士,主要从事地基处理和离散元数值模拟方面的研究。
  • 基金资助:

    国家自然科学基金资助(No. 50578122);上海市重点学科建设项目资助(No. B308)。

Mesomechanical analysis of characteristics of dry sands in response to dynamic compaction with PFC2D

JIA Min-cai 1,2,WANG Lei1,ZHOU Jian 1,2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key laboratory of Geotechnical & Underground Engineering. of Education Ministry, Tongji University, Shanghai 200092, China
  • Received:2008-10-17 Online:2009-04-10 Published:2011-01-30

摘要:

通过引进和开发二维颗粒流程序,基于相似理论建立了可以模拟砂土地基强夯加固的细观颗粒流模型,结合小比尺室内细观模型试验,从颗粒细观力学角度入手对干砂在强夯冲击加固过程中的动力反应特性进行了数值模拟。结果表明,数值模拟结果与试验结果有较好的一致性,利用颗粒流模型可以很好地模拟干砂在冲击荷载作用下的锤底动接触应力、颗粒间动接触应力和颗粒位移场分布情况,并可以实时跟踪颗粒的变位及接触应力变化,实现从细观角度揭示干砂强夯动力响应特性,研究工作为今后砂土强夯加固宏细观机制研究提供了一条新的思路。

关键词: 强夯, 干砂, 颗粒流, 动应力, 位移场

Abstract:

Based on the similarity theory, the numerical analysis model is established to study the mechanism of dynamic compaction of dry sands by means of secondary exploitation using the PFC2D (particle flow code in 2 dimensions). Dynamic response characteristics of dry sands to impacting are simulated in combination with laboratory mesomechanical model test. The availability and rationality of the proposed numerical method is verified by comparing the numerical solutions with the results of real data. The results show that the dynamic stress of tamper bottom can be well simulated with PFC2D as well as dynamic stress among sand grains and displacement field during dynamic compaction. Apart from movement of sand grains, the change of dynamic stress can be real-time traced and recorded. The findings of this study provide a new route to research the macro-meso mechanism of sands dynamic compaction.

Key words: dynamic compaction, dry sands, particle flow code, dynamic stress, displacement field

中图分类号: 

  • TU 473
[1] 宋义敏, 张 悦, 许海亮, 王亚飞, 贺志杰. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究[J]. 岩土力学, 2020, 41(2): 363-371.
[2] 彭守建, 郭世超, 许江, 郭臣业, 张超林, 贾立, . 采动诱导应力集中对顺层钻孔瓦斯抽采 影响的试验研究[J]. 岩土力学, 2019, 40(S1): 99-108.
[3] 唐国艺, 刘智, 刘争宏, 唐立军, 于永堂, 姜文, . 低能级强夯在安哥拉Quelo砂中的应用[J]. 岩土力学, 2019, 40(S1): 203-209.
[4] 窦锦钟, 邵雪莹, 廖晨聪, 陈锦剑, . 不同夯点布置形式下群夯加固效果研究[J]. 岩土力学, 2019, 40(S1): 527-534.
[5] 刘中宪, 王治坤, 梁建文, 王楚楚, . 基于球面波势函数基本解方法的弹性波 三维散射与动应力求解[J]. 岩土力学, 2019, 40(7): 2730-2738.
[6] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[7] 刘家顺, 王来贵, 张向东, 李学彬, 张建俊, 任 昆, . 部分排水时饱和粉质黏土变围压循环三轴试验研究[J]. 岩土力学, 2019, 40(4): 1413-1419.
[8] 夏唐代, 郑晴晴, 陈秀良, . 基于累积动应力水平的间歇加载下超孔压预测[J]. 岩土力学, 2019, 40(4): 1483-1490.
[9] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[10] 梅慧浩, 冷伍明, 聂如松, 刘文劼, 伍晓伟, . 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学, 2019, 40(4): 1603-1613.
[11] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[12] 张成功, 尹振宇, 吴则祥, 金银富, . 颗粒形状对粒状材料圆柱塌落影响的 三维离散元模拟 [J]. 岩土力学, 2019, 40(3): 1197-1203.
[13] 徐 鹏, 蒋关鲁, 任世杰, 田鸿程, 王智猛, . 红层泥岩及其改良填料路基动力响应试验研究[J]. 岩土力学, 2019, 40(2): 678-683.
[14] 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906.
[15] 周航, 袁井荣, 刘汉龙, 楚剑, . 矩形桩沉桩挤土效应透明土模型试验研究[J]. 岩土力学, 2019, 40(11): 4429-4438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘东燕,孙海涛,张 艳. 采动影响下采区上覆岩层层间剪切滑移模型分析[J]. , 2010, 31(2): 609 -614 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 张志强,何本国,何 川. 水底隧道饱水地层衬砌作用荷载研究[J]. , 2010, 31(8): 2465 -2470 .
[5] 毛 宁,张尧亮. 经验公式简便求法典型实例[J]. , 2010, 31(9): 2978 -2982 .
[6] 李伟华,赵成刚,杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. , 2010, 31(12): 3958 -3963 .
[7] 韩现民. 西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J]. , 2010, 31(S2): 297 -302 .
[8] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[9] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[10] 魏焕卫,杨 敏,贾 强,孙剑平. 基于Mindlin解的土压力位移计算模型[J]. , 2011, 32(2): 495 -502 .