›› 2010, Vol. 31 ›› Issue (11): 3392-3396.

• 基础理论与实验研究 • 上一篇    下一篇

高应力下颗粒材料一维力学特性研究(II):蠕变性质

王者超1, 2,李术才1   

  1. 1.山东大学 岩土与结构工程中心,济南 250061;2.卡尔加里大学 土木工程系,加拿大 卡尔加里 T2N1N4
  • 收稿日期:2009-07-24 出版日期:2010-11-10 发布日期:2010-11-24
  • 作者简介:王者超,男,1980年生,博士,讲师,主要从事岩土类材料蠕变性质的学习与研究工作。
  • 基金资助:

    高等学校博士学科点专项科研基金资助课题(No. 20060422002)。

One-dimensional mechanical behavior of granular materials at high stresses (Part II): Creep behavior

WANG Zhe-chao 1, 2,LI Shu-cai1   

  1. 1. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China; 2. Department of Civil Engineering, University of Calgary, Calgary T2N1N4, Canada
  • Received:2009-07-24 Online:2010-11-10 Published:2010-11-24

摘要:

现场和试验观测表明,高应力下砂土的蠕变过程伴随着颗粒破碎现象。通过开展砂土的一维蠕变试验发现,试样的颗粒破碎量随时间增加而增加,且蠕变速率与颗粒破碎速率成正比。在此基础上,分析了蠕变过程中能量转化关系,利用表面物理学和分形几何学理论,得到了一维蠕变条件下颗粒破碎速率与宏观蠕变速率之间的关系表达式。研究结果表明,高应力一维蠕变条件下颗粒材料的宏观蠕变速率与颗粒破碎速率成正比。最后,对该研究采用的等效化方法进行了讨论。

关键词: 砂土, 一维蠕变, 颗粒破碎, 分形, 表面张力

Abstract:

It is shown in both field and laboratory observations that the creep process of granular materials is accompanied by grain crushing. One-dimensional creep tests were conducted on sands. It is found in the tests that the amount of crushed grains increases with time at specified stresses; and the grain crushing rate is directly proportional to creep rate. Based on these findings, energy conversion in the process of grain crushing is analyzed; and the relationship between grain crushing rate and creep rate is obtained. It is concluded that the creep rate is directly proportional to grain crushing rate when granular materials are subject to creep at high stresses.

Key words: sands, one-dimensional creep, grain crushing, fractals, surface tension

中图分类号: 

  • TU 443
[1] 王峰, 张建清, . 考虑颗粒强度尺寸效应的原型堆石料破碎特性研究[J]. 岩土力学, 2020, 41(1): 87-94.
[2] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[3] 孙红, 宋春雨, 滕慕薇, 葛修润. 加荷条件下软黏土的孔隙演化特征[J]. 岩土力学, 2020, 41(1): 141-146.
[4] 覃玉兰, 邹新军, 曹雄. 均质砂土中水平简谐荷载与扭矩联合 受荷单桩内力、位移分析[J]. 岩土力学, 2020, 41(1): 147-156.
[5] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[6] 赵国彦, 李振阳, 吴浩, 王恩杰, 刘雷磊. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学, 2019, 40(S1): 73-81.
[7] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[8] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[9] 彭宇, 丁选明, 肖杨, 楚剑, 邓玮婷, . 基于染色标定与图像颗粒分割的 钙质砂颗粒破碎特性研究[J]. 岩土力学, 2019, 40(7): 2663-2672.
[10] 孔宪京, 宁凡伟, 刘京茂, 邹德高, 周晨光, . 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065.
[11] 孙逸飞, 陈 成, . 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822.
[12] 纪国法, 李奎东, 张公社, 李少明, 张 蕾, 刘 炜, . 页岩I型断裂韧性的分形计算方法与应用[J]. 岩土力学, 2019, 40(5): 1925-1931.
[13] 丁建源, 陈晓斌, 张家生, 刘怡吟, 肖源杰, . 基于对数几率回归模型的粗颗粒土颗粒 破碎过程演化研究[J]. 岩土力学, 2019, 40(4): 1465-1473.
[14] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[15] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[3] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[4] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[5] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[6] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[7] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[8] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[9] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .
[10] 卫振海 ,王梦恕 ,张顶立 . 土结构强度模型研究[J]. , 2013, 34(1): 40 -46 .