›› 2010, Vol. 31 ›› Issue (7): 2329-2335.

• 数值分析 • 上一篇    下一篇

新型高强预应力让压锚杆巷道支护性能的数值模拟

连传杰1,徐卫亚2,王亚杰3,王志华4   

  1. 1.山东科技大学 资源与土木工程系,山东 泰安 271019;2.河海大学 岩土工程研究所,南京 210098; 3.捷马(济宁)矿山支护设备制造有限公司,山东 济宁 272023;4.南京工业大学 土木工程学院,南京 210009
  • 收稿日期:2009-01-13 出版日期:2010-07-10 发布日期:2010-07-19
  • 作者简介:连传杰,男,1962年生,博士,教授,主要从事井巷支护与特殊开采技术研究。

Numerical simulation of entry performance supported by a new high strength and high pretension yieldable bolts

LIAN Chuan-jie1, XU Wei-ya2, WANG Ya-jie3, WANG Zhi-hua4   

  1. 1. Department of Resources & Civil Engineering, Shandong University of Science & Technology, Taian, Shandong 271019, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 3. Jennmar (Jining) Mine Roof Support Products Co. Ltd., Jining, Shandong 272023, China; 4. College of Civil Engineering, Nanjing University of Technology, Nanjing 210009, China
  • Received:2009-01-13 Online:2010-07-10 Published:2010-07-19

摘要:

一种新型的高强高预应力让压锚杆在国内煤矿深埋巷道支护中得到了成功应用,与普通锚杆相比,高强度、高预应力和让压性能是其主要特点。基于高强预应力让压锚杆力学模型,建立了让压锚杆-围岩相互作用体系的有限元数值模型,并对巷道围岩应力分布、位移和锚杆受力性能进行了分析。结果表明,高强预应力让压锚杆系统能够减小锚杆荷载,且可防止大变形和深井巷道支护中锚杆过早地进入屈服,对杆体具有保护作用。

关键词: 高强预应力让压锚杆, 深埋巷道, 围岩, 锚杆荷载, 数值模拟

Abstract:

The new high strength and high pretension yieldable bolts have been successfully applied to the entry support of deep coal mine in China. Compared with the high strength and high pretension bolts used in coal mine, the new bolts have the high strength, high pretension and yieldable characteristics. Based on the mechanical model of the high strength and high pretension yieldable bolt, a finite element numerical model of the adjacent rock-bolts interaction is constructed. The stress and displacement distribution around entry and roof bolt loading are analyzed through FEM model. The results show that the yieldable mechanism of the bolt system can reduce the bolt load, thus prevent the bolt system from yielding in the condition of large deformation and deep coal mine.

Key words: high strength and high pretension yieldable bolt, deep mine entry, adjacent rock, bolt load, numerical simulation

中图分类号: 

  • TU 32
[1] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[2] 蒋中明, 李鹏, 赵海斌, 冯树荣, 唐栋, . 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241.
[3] 翁永红, 张练, 徐唐锦, 黄书岭, 丁秀丽, . 高水头下大型导流洞新型堵头-围 岩相互作用规律与安全评价[J]. 岩土力学, 2020, 41(1): 242-252.
[4] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[5] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[6] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[7] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[8] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[9] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[10] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[11] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[12] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[13] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[14] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[15] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 朱建明,彭新坡,姚仰平,徐金海. SMP准则在计算煤柱极限强度中的应用[J]. , 2010, 31(9): 2987 -2990 .
[5] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[6] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[7] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[8] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[9] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[10] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .