›› 2016, Vol. 37 ›› Issue (7): 1921-1928.doi: 10.16285/j.rsm.2016.07.012

• 基础理论与实验研究 • 上一篇    下一篇

循环荷载及静载下土工格室加筋路堤模型试验研究

高 昂1, 2,张孟喜1,朱华超1,姜圣卫3   

  1. 1.上海大学 土木工程系,上海 200072;2. 嘉兴南洋职业技术学院 船舶与建筑工程分院,浙江 嘉兴 314003; 3. 江苏省仪征市佳和土工材料有限公司,江苏 仪征 211401
  • 收稿日期:2015-08-01 出版日期:2016-07-11 发布日期:2018-06-09
  • 通讯作者: 张孟喜,男,1963年生,博士后,教授,博士生导师,主要从事新型土工加筋技术及岩土工程研究工作。E-mail: mxzhang@shu.edu.cn E-mail: gaoangv@126.com
  • 作者简介:高昂,男,1982年生,博士研究生,讲师,主要从事新型土工加筋技术及岩土工程研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 41372280);浙江省访问工程师项目(No. FW2015176)。

Model tests on geocell-reinforced embankment under cyclic and static loadings

GAO Ang1,2,ZHANG Meng-xi1,ZHU Hua-chao1,JIANG Sheng-wei3   

  1. 1. Department of Civil Engineering, Shanghai University, Shanghai 200072, China; 2. Branch of Ship and Construction Engineering, Jiaxing Nanyang Polytechnic Institute, Jiaxing, Zhejiang 314003, China; 3. Jiahe Geosynthetics Company, Yizheng, Jiangsu 211401, China
  • Received:2015-08-01 Online:2016-07-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41372280) and Visiting Engineer Project of Zhejiang Province(FW2015176).

摘要: 为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固定振次循环荷载后极限承载力的变化进行研究。试验表明,土工格室加筋能显著提高地基极限承载力并能显著减小坡顶和坡中临界破坏时的法向累积变形,在加筋间距一定的情况下,加筋层数增加和格室高度增大均可不同程度提高极限承载力并减小临界破坏时坡顶法向累积变形,格室焊距的减小也可在一定程度提高极限承载力,格室焊距对边坡法向变形影响不大;长期循环荷载下固定间距加筋层数对路堤竖向累积沉降量影响不大,而对边坡坡顶法向累积变形有一定影响,格室高度增大和格室焊距减小均可不同程度减小路堤竖向累积沉降量和坡面法向累积变形;越靠近加载点处,路堤土压力值受加筋影响越显著,加筋提高了土体刚度和密实度,使加筋路堤土压力值较无筋路堤明显增大;对于无筋路堤,改变动载幅值和振次均导致振后极限承载力有不同程度的降低,而对于加筋路堤,当动载幅值≥30 kPa或动载振次≥1 000时,振后极限承载力均有不同程度的提高。

关键词: 循环荷载, 土工格室, 模型试验, 沉降, 极限承载力, 法向累积变形

Abstract: To investigate the performance of reinforced embankment under cyclic and/or static loading, a series of model tests is performed on the geocell-reinforced embankments with various reinforced layers, geocell heights and welding distances, using the loading device of USTX-2000 developed by the GCTS company. The ultimate bearing capacities of the reinforced embankment subjected to both long-term cyclic loading and fixed-number cyclic loading are determined under various operating conditions. The experimental results show that geocell can significantly increase the ultimate bearing capacity of foundation soils and observably reduce the normal accumulated deformation at the critical failure of the top and the middle of slope; for a certain reinforcement spacing, with the increase of the number of reinforcement layers and the height of the geocell, the ultimate bearing capacity can be improved to different degrees and the normal accumulated deformation of critical failure of the top of slope can be reduced; the decrease of the weld space of geocell can also improve the ultimate bearing capacity, and the weld space of geocell has trivial effect on the normal deformation of slope. The number of reinforced layers in fixed spacing has little effect on the vertical cumulative settlement of embankment and can influence the normal accumulated deformation of the top of slope under long-term cyclic loading; the increase of the height of geocell and the decrease of weld space of geocell can reduce the vertical cumulative settlement of the embankment and the normal accumulated deformation of the slope to different degrees. The less the distance to the point of loading, the more significant the influence of reinforcement on the soil pressure of embankment, and the reinforcement increases the stiffness and compactness of soil, so that the soil pressure of the reinforced embankment increases more obviously than that of unreinforced embankment. For the unreinforced embankments, the change of dynamic load amplitude and vibration number can result in the reduction of the ultimate bearing capacity after vibration. For the reinforced embankment, when the dynamic load amplitude is greater than or equal to 30 kPa or the number of dynamic load vibration is greater than or equal to 1 000, the ultimate bearing capacity after vibration is improved.

Key words: cyclic loading, geocell, model test, settlement, ultimate bearing capacity, normal accumulated deformation

中图分类号: 

  • TU 447

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[3] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[4] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[5] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[6] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[7] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[8] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[9] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[10] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[11] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[12] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[13] 李宗泽, 姜德义, 范金洋, 陈 结, 刘 伟, 吴 斐, 杜 超, 康燕飞. 盐岩三轴间隔疲劳特性试验研究[J]. 岩土力学, 2020, 41(4): 1305-1312.
[14] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[15] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!