›› 2017, Vol. 38 ›› Issue (6): 1797-1804.doi: 10.16285/j.rsm.2017.06.030

• 数值分析 • 上一篇    下一篇

黏弹-双曲线Drucker-Prager塑性模型应力更新隐式算法

闫富有,常 键,刘忠玉   

  1. 郑州大学 土木工程学院,河南 郑州 450001
  • 收稿日期:2016-06-12 出版日期:2017-06-12 发布日期:2018-06-05
  • 作者简介:闫富有,男,1963年生,硕士,副教授,主要从事岩土力学、地基基础和地下工程等方面的教学与研究工作
  • 基金资助:

    国家自然科学基金项目(No.51578511)。

A return mapping implicit algorithm for coupled viscoelastic and hyperbolic Drucker-Prager plastic modeling

YAN Fu-you, CHANG Jian, LIU Zhong-yu   

  1. School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • Received:2016-06-12 Online:2017-06-12 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51578511).

摘要: 黏弹-塑性模型是由黏弹性模型与塑性元件串联而成,可视为黏弹-黏塑性模型中黏塑性黏度参数趋于0的一种极限情况,为黏弹性材料的结构破坏分析提供了一个途径。把黏弹-塑性模型的应变增量分解为黏弹和塑性增量两部分,考虑黏弹性应变历史,把黏弹性积分型本构关系在一个时步内线性化,定义与时间增量相关的剪切模量和体积模量,导出应力递推公式,把黏弹-塑性本构积分转化为与弹塑性相似的形式。针对由黏弹性和双曲线Drucker-Prager塑性、各向同性硬化的黏弹-塑性模型,通过黏弹性预估和塑性校正“二步”算法实现对应力的更新,给出完全隐式算法和最终的计算公式。算例比较分析表明,由于迭代过程中仅需要简单的函数计算,该算法具有很好的收敛性。一般经过2次迭代运算后,屈服函数值已达到10?10的量级,应力点便返回到屈服面上。

关键词: 黏弹性, 塑性, 应力更新算法, 一致切线算子, 有限元法

Abstract: A coupled viscoelastic-plastic model is composed of viscoelastic model and a series of plastic elements, which can be regarded as a limit condition of the viscoelastic-viscoplastic model when the viscosity-related parameter of viscoplasticity is close to 0. This model provides an alternative scheme for analysing the structural collapse of viscoelastic materials by numerical solution at the certain circumstance. First, the strain increment was decomposed into viscoelastic part and plastic part in this viscoelastic-plastic model. Then the integral type viscoelastic constitutive equations were linearized over the time interval, by taking the history of viscoelastic strains into consideration. Meanwhile, the shear and bulk modules were clearly defined, which are functions of the time increment. The recurrence formulas for stresses on viscoelastic strains were deduced as well. The numerical integration of viscoelastic-plastic constitutive equation was transformed into the similar format with the general elastic-plastic circumstance. The plastic part of the viscoelastic-plastic model was assumed as the hyperbolic Drucker-Prager plasticity with isotropic hardening. Finally, the fully implicit stress update algorithm and the associated consistent tangent operator, as well as the final formulas, were derived by the combination of the viscoelastic predictor and the plastic return mapping. The comparison and analysis of numerical examples indicate that the algorithm had a good convergence, since only the simple function calculation was performed in each iteration process. After two iterations, the value of yield function reached to 10?10 degree, and the stress point returned to the yield surface.

Key words: viscoelasticity, plasticity, return mapping algorithm, consistent tangent operator, FEM

中图分类号: 

  • TU 470

[1] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[2] 王康宇, 庄妍, 耿雪玉, . 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
[3] 徐日庆, 蒋佳琪, 冯苏阳, 鞠露莹, . 一种旋转塑性势面模型及非关联塑性流动法则[J]. 岩土力学, 2020, 41(5): 1474-1482.
[4] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[5] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[6] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[7] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[8] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[9] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[10] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
[11] 侯会明, 胡大伟, 周辉, 卢景景, 吕涛, 张帆. 考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法[J]. 岩土力学, 2020, 41(3): 1056-1064.
[12] 方瑾瑾, 冯以鑫, 王立平, 余永强, . 真三轴条件下非饱和黄土的有效应力屈服特性[J]. 岩土力学, 2020, 41(2): 492-500.
[13] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[14] 柯锦福, 王水林, 郑宏, 杨永涛, . 基于修正对称和反对称分解的 三维数值流形元法应用推广[J]. 岩土力学, 2020, 41(2): 695-706.
[15] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!