岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1217-1229.doi: 10.16285/j.rsm.2022.0658

• 数值分析 • 上一篇    下一篇

交叉裂隙岩体裂纹扩展试验及混合有限−离散元数值模拟研究

梁东旭1,张农1, 2, 3,荣浩宇4   

  1. 1. 徐州工程学院 土木工程学院,江苏 徐州 221116;2. 中国矿业大学 矿业工程学院,江苏 徐州 221116; 3. 中国矿业大学 煤炭资源与安全开采国家重点实验室,江苏 徐州 221116;4. 河海大学 土木与交通学院,江苏 南京 210098
  • 收稿日期:2022-05-05 接受日期:2022-07-11 出版日期:2023-04-18 发布日期:2023-04-29
  • 通讯作者: 张农,男,1968年生,博士,教授,主要从事巷道围岩控制、智能掘进方面的研究。E-mail: zhangnong@cumt.edu.cn E-mail:dongxuliang@cumt.edu.cn
  • 作者简介:梁东旭,男,1989年生,博士,讲师,主要从事岩石力学、巷道支护方面的研究。
  • 基金资助:
    国家自然科学基金重点项目(No.52034007);国家自然科学基金面上项目(No.52074263)

Experiment and hybrid finite-discrete element modelling of crack propagation in cross-fissured rock masses

LIANG Dong-xu1, ZHANG Nong1, 2, 3, RONG Hao-yu4   

  1. 1. School of Civil Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 4. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2022-05-05 Accepted:2022-07-11 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China (52034007) and the General Program of National Natural Science Foundation of China (52074263).

摘要: 对预制交叉裂隙岩石试样进行裂纹扩展试验,研究了裂纹萌生、扩展、聚合过程,分析了主裂隙和轴向载荷夹角及主次裂隙夹角对裂纹起裂应力和聚合应力的影响,并用混合有限元−离散元程序,即图形处理器并行化的3D Y-HFDEM代码对试验进行了仿真计算,实现了岩石破坏从连续介质向非连续介质的过渡,对裂纹类及损伤破坏模式进行了识别,捕捉到了试验中难以发现的现象。研究表明:随主裂隙与轴向载荷夹角增加,裂纹聚合区的拉伸裂纹数量增加;裂纹起裂和聚合应力与主裂隙与轴向载荷夹角成正比;主次裂隙夹角增加,岩石的破坏模式由拉伸破坏转为剪切破坏,交叉裂隙加剧岩石破碎程度;主裂隙尖端萌生扩展的拉伸−剪切混合裂缝引起的破坏在岩石破坏中占主导地位,是导致岩体失去承载能力的主控裂纹;混合有限元−离散元仿真软件GPGPU并行化的3D Y-HFDEM IDE在岩石裂纹扩展研究中具有优势,可以捕捉实验室难以发现的损伤断裂类型,可以作为岩石裂纹扩展研究的有力工具。

关键词: 交叉裂隙, 裂纹扩展, 混合有限?离散元仿真, 聚合类型, 起裂应力

Abstract: Crack propagation experiments were conducted on the prefabricated cross-fissured rock specimens to study the crack initiation, propagation, and coalescence processes. The effects of the angle between the primary fissure and the axial load and the angle between the primary and minor fissures on the crack initiation stress and the coalescence stress were analyzed. The experiments were modelled and calculated with a hybrid finite-discrete element program, i.e., 3D Y-HFDEM code parallelized by a graphic processor. The transition of rock damage from continuous to the discontinuous medium was achieved. Crack categories and damage modes were identified and the phenomenon that was difficult to find in the experiments was captured. It is shown that the number of tensile cracks in the crack coalescence zone increases as the angle between the main fissure and the axial load increases. The crack initiation and coalescence stresses are proportional to the angle between the main fissure and the axial load. The damage mode of the rock changes from tensile damage to shear damage as the angle between the primary and minor fissures increases. Cross fissures increase the degree of rock fragmentation. Damage caused by mixed tensile-shear cracks initiating and propagating at the tip of the primary fissure dominates the rock damage and is the main control fissure leading to the loss of bearing capacity of the rock mass. The hybrid finite-discrete element simulation software GPGPU parallelized 3D Y-HFDEM IDE is advantageous in study of rock crack propagation to capture damage and fracture types that are difficult to detect in the laboratory, and can be a powerful tool for study of rock crack propagation.

Key words: rossed fissures, crack extension, 3D hybrid finite-discrete element modelling, coalescence category, crack initiation stress

中图分类号: 

  • TU452
[1] 徐浩淳, 金爱兵, 赵怡晴, 陈哲, . 热处理砂岩不同接触角巴西劈裂数值模拟研究[J]. 岩土力学, 2022, 43(S2): 588-597.
[2] 杨恩光, 杨立云, 胡桓宁, 汪自扬, 张飞. 单轴压缩荷载下闭合裂纹扩展的试验和数值研究[J]. 岩土力学, 2022, 43(S1): 613-622.
[3] 杨科, 张寨男, 池小楼, 吕鑫, 魏祯, 刘文杰, . 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学, 2022, 43(7): 1791-1802.
[4] 张黎明, 王在泉, 赵天阳, 丛宇, . 孔隙水压力作用下砂岩裂纹扩展行为的试验研究[J]. 岩土力学, 2022, 43(4): 901-908.
[5] 武东阳, 蔚立元, 苏海健, 吴疆宇, 刘日成, 周键. 单轴压缩下加锚裂隙类岩石试块裂纹扩展试验 及PFC3D模拟[J]. 岩土力学, 2021, 42(6): 1681-1692.
[6] 杨亮, 杨永涛, 郑宏, . 相场数值流形法模拟岩石裂纹扩展[J]. 岩土力学, 2021, 42(12): 3419-3427.
[7] 薛松, 杨志兵, 李东奇, 陈益峰. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67.
[8] 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898.
[9] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[10] 赵军, 郭广涛, 徐鼎平, 黄翔, 胡偲, 夏跃林, 张頔. 三轴及循环加卸载应力路径下深埋 硬岩变形破坏特征试验研究[J]. 岩土力学, 2020, 41(5): 1521-1530.
[11] 金爱兵, 王树亮, 王本鑫, 孙浩, 陈帅军, 朱东风, . 基于DIC的3D打印交叉节理试件破裂机制研究[J]. 岩土力学, 2020, 41(12): 3862-3872.
[12] 李晓照, 班力壬, 戚承志, . 高渗透压脆性岩石蠕变宏−细观力学模型研究[J]. 岩土力学, 2020, 41(12): 3987-3995.
[13] 金爱兵, 王树亮, 王本鑫, 孙浩, 赵怡晴, . 基于DIC技术的3D打印节理试件破裂机制研究[J]. 岩土力学, 2020, 41(10): 3214-3224.
[14] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[15] 李博, 黄嘉伦, 钟振, 邹良超, . 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 乾增珍,鲁先龙,丁士君. 风积沙地基斜柱基础上拔水平力组合荷载试验[J]. , 2009, 30(1): 257 -260 .
[2] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[3] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[4] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[5] 黄小兰 ,杨春和 ,陈 锋 ,李银平 ,李应芳. 潜江地区层状盐岩天然气储库密闭性评价研究[J]. , 2011, 32(5): 1473 -1478 .
[6] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[7] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[8] 刘奉银 ,张 昭 ,周 冬 ,赵旭光 ,朱 良. 密度和干湿循环对黄土土-水特征曲线的影响[J]. , 2011, 32(S2): 132 -136 .
[9] 张先伟 ,王常明 ,李军霞 . 软土固结蠕变特性及机制研究[J]. , 2011, 32(12): 3584 -3590 .
[10] 吴贤振 ,刘祥鑫 ,梁正召 ,游 勋 ,余 敏 . 不同岩石破裂全过程的声发射序列分形特征试验研究[J]. , 2012, 33(12): 3561 -3569 .