›› 2002, Vol. 23 ›› Issue (6): 667-972.

• 基础理论与实验研究 •    下一篇

砂土的物态本构模型

邵生俊,谢定义   

  1. 西安理工大学, 陕西 西安 710048
  • 收稿日期:2001-11-19 出版日期:2002-12-10 发布日期:2016-09-04
  • 作者简介:邵生俊,男,1964年生,岩土工程博士,副教授,主要从事土动力学及土抗震研究。
  • 基金资助:
    国家自然科学基金项目(10172070)及陕西省教委基金项目(01JK141)

A physical state constitutive model of sands under cyclic loading

SHAO Sheng-jun ,XIE Ding-yi   

  1. Xi’an University of Technology, Xi’an 710048, China
  • Received:2001-11-19 Online:2002-12-10 Published:2016-09-04

摘要: 基于砂土的压缩回胀性、剪切非线性及剪缩剪胀性的系统分析和包括循环荷载、主应力轴旋转及应力路径偏转等复杂应力条件下的复杂变形反应,得到了三类应力-应变基本关系。在剪缩剪胀应力-应变关系中,引入了由偏应变分量确定的应变路径长度变量,揭示了应力主轴旋转、应力路径偏转引起的剪缩剪胀性。将这些基本关系与循环荷载下砂土的物态变化相联系,建立了砂土的物态动本构关系。

关键词: 砂土, 物态变化, 应变路径, 动本构关系

Abstract: Based on the analysis of the compression, shear nonlinearity and dilatancy of sand and its complicated response under the complicated stress condition including the cyclic loading, rotation of principal stress axis and deflexion of stress path; three kinds of stress-strain relation are obtained. They are described by a relationship between effective mean normal stress and compressive volume strain, a relationship between deviatoric stress and deviatoric strain and a relationship between effective stress ratio and dilatancy strain ratio respectively. Through the increasing length in deviatoric strain path determined by the component in deviatoric strain space, the positive and negative dilatancy can be obtained under rotation of principal stress axis or deflexion of stress path. Developing the essential stress-strain relations under cyclic loading, a physical state dynamic constitutive model of sand is establisbed and related to its change in physical states.

Key words: sands, physical states, strain path;dynamic constitutive model

中图分类号: 

  • TU 43
[1] 孙逸飞, 陈 成, . 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822.
[2] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[3] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[4] 张 勋, 黄茂松, 胡志平, . 砂土中单桩水平循环累积变形特性模型试验[J]. 岩土力学, 2019, 40(3): 933-941.
[5] 陆 勇, 周国庆, 杨冬英, 宋家庆, . 砂土剪胀软化、剪缩硬化统一本构的显式计算[J]. 岩土力学, 2019, 40(3): 978-986.
[6] 张成功, 尹振宇, 吴则祥, 金银富, . 颗粒形状对粒状材料圆柱塌落影响的 三维离散元模拟 [J]. 岩土力学, 2019, 40(3): 1197-1203.
[7] 董建勋, 刘海笑, 李 洲. 适用于砂土循环加载分析的边界面塑性模型[J]. 岩土力学, 2019, 40(2): 684-692.
[8] 纪文栋,张宇亭,王 洋,裴文斌, . 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. , 2018, 39(S1): 282-288.
[9] 丁红岩,贾 楠,张浦阳, . 砂土中筒型基础沉放过程渗流特性和沉贯阻力研究[J]. , 2018, 39(9): 3130-3138.
[10] 史旦达,杨彦骋,邓益兵,刘文白,. 考虑转速比影响的砂土中螺旋挤扩钻具成孔特性宏细观模型试验[J]. , 2018, 39(6): 1981-1990.
[11] 付海清,袁晓铭,王 淼,. 基于现场液化试验的饱和砂土孔压增量计算模型[J]. , 2018, 39(5): 1611-1618.
[12] 毕 骏,谌文武,戴鹏飞,林高潮, . 校正系数对不同形式的Van Genuchten方程各拟合参数的影响[J]. , 2018, 39(4): 1302-1310.
[13] 刘 笋,蒋明镜,付 昌,朱俊高,. 结构性砂土静力触探试验离散元分析[J]. , 2018, 39(3): 933-942.
[14] 李连祥,符庆宏,黄佳佳, . 砂土地基和粉质黏土地基基坑悬臂开挖离心模型试验[J]. , 2018, 39(2): 529-536.
[15] 陆 勇,周国庆,顾欢达,. 高低压下不同力学特性的砂土统一模型[J]. , 2018, 39(2): 614-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈运平,王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. , 2010, 31(4): 1030 -1034 .
[2] 周爱军,栗 冰. CFG桩复合地基褥垫层的试验研究和有限元分析[J]. , 2010, 31(6): 1803 -1808 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 刘彩平,鞠 杨,段庆全. 岩石材料内部特征尺度对裂纹扩展机制的影响[J]. , 2010, 31(S1): 91 -95 .
[5] 黎高辉,吴从师,邓泷波,韦晓阳,黎 晨. 悬索桥隧道式锚碇和下穿公路隧道相互作用机制研究[J]. , 2010, 31(S1): 363 -369 .
[6] 陈 峰,田利勇,卢伟华. 盾构隧道穿越苏州河对防汛墙的影响分析[J]. , 2010, 31(12): 3855 -3860 .
[7] 李雄威,孔令伟,郭爱国. 气候影响下膨胀土工程性质的原位响应特征试验研究[J]. , 2009, 30(7): 2069 -2074 .
[8] 李世民,曾宪明,林大路. 新型复合锚固结构抗爆优化设计数值模拟分析[J]. , 2009, 30(S1): 276 -281 .
[9] 罗玉龙,罗谷怀. 洞庭湖区减压井井管及滤层结构试验研究[J]. , 2009, 30(S2): 110 -113 .
[10] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .