›› 2015, Vol. 36 ›› Issue (5): 1415-1420.doi: 10.16285/j.rsm.2015.05.025

• 岩土工程研究 • 上一篇    下一篇

大断面深埋高水压地铁盾构隧道周边土压力作用模式评价

李 雪1,周顺华1,宫全美1,陈长江2   

  1. 1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.中铁隧道勘测设计院有限公司,天津 300133
  • 收稿日期:2014-10-23 出版日期:2015-05-11 发布日期:2018-06-13
  • 作者简介:李雪,男,1985年生,博士研究生,主要从事岩土工程、盾构隧道设计施工方面的研究工作。
  • 基金资助:

    上海市科委资助项目(No. 13231200200);南京地铁集团有限公司资助项目(No. D3-XY01-0001-1206)。

Evaluation of earth pressure around a deeply buried metro shield tunnel with a large cross-section under high water pressure conditions

LI Xue1, ZHOU Shun-hua1, GONG Quan-mei1, CHEN Chang-jiang2   

  1. 1. Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China; 2. China Railway Tunnel Survey & Design Institute Co., Ltd., Tianjin 300133, China
  • Received:2014-10-23 Online:2015-05-11 Published:2018-06-13

摘要: 以南京某大直径地铁盾构隧道为背景,对盾构管片衬砌所受荷载及结构内力进行现场测试,分析了深埋高水压粉细砂地层中盾构隧道管片土压力大小及分布特征。采用3种不同竖向荷载组合(即有效上覆土压力+水压力,太沙基松动土压力+水压力,只有水压力)计算管片内力并与实测内力进行比较,评价了作用在盾构隧道管片上的土压力模式。结果表明:(1)作用在盾构隧道衬砌上的水压力大小基本等于静止水压力;(2)盾构隧道隧顶实测土压力约为太沙基松动土压力的80%,实测隧顶土压力更接近于太沙基松动土压力,隧道上方存在土拱;(3)现场实测管片弯矩较3种荷载作用下计算弯矩小,而实测管片轴力约为理论计算轴力的2倍。此外,分析了水平地基抗力系数对隧道管片内力的影响。研究成果可为大直径深埋盾构隧道设计提供参考。

关键词: 盾构隧道, 深埋大断面, 现场监测, 土压力

Abstract: A field monitoring program is performed to measure the earth pressures acting on the linings and the internal forces in segments of a slurry shield tunnel of Yangtze River tunnel project in Nanjing. The magnitude and distribution of the earth pressure are analyzed around the tunnel deeply buried in a silty sand stratum with high pore water pressure. The internal forces in the segments of concern are calculated under three different vertical loading combinations(i.e. effective overlying soil pressure plus water pressure, Terzaghi’s soil pressure plus water pressure, and water pressure only ), and the results are compared to the ones measured in the field. The results show that: 1) the water pressure acting on the shield tunnel lining is almost equal to the theoretical hydrostatic pressure; 2) the observed vertical earth pressure on the crown of shield tunnel accounts for about 80% of that yield by the Terzaghi’s soil pressure plus water pressure formulation, showing soil arching effect exists above the tunnel; 3) the observed bending moments are smaller than theoretical results of the three combination methods, and the measured axial forces are approximately twice as much as the theoretical results. In addition, the influence of the ground reaction on the internal force in the segments is also discussed. The insights provided from this study can contribute to the improvement of large-section shield lining design.

Key words: shield tunnel, deep large cross-section, field monitoring, earth pressure around the segment

中图分类号: 

  • U 455.43
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[6] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[7] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[8] 汪大海, 贺少辉, 刘夏冰, 张嘉文, 姚文博. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322.
[9] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[10] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[11] 唐德琪, 俞 峰, 陈奕天, 刘念武, . 既有−新增排桩双层支挡结构开挖模型试验研究[J]. 岩土力学, 2019, 40(3): 1039-1048.
[12] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[13] 梁 波, 厉彦君, 凌学鹏, 赵宁雨, 张青松, . 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826.
[14] 张业勤, 陈保国, 孟庆达, 徐昕, . 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40(12): 4813-4818.
[15] 田雨, 姚仰平, 路德春, 杜修力, . 基于修正应力法的横观各向同性摩尔-库仑 准则及被动土压力公式[J]. 岩土力学, 2019, 40(10): 3945-3950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[3] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[4] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[5] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[6] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[7] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[8] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .
[9] 王松鹤,齐吉琳. 高温冻土松弛特性试验研究[J]. , 2012, 33(6): 1660 -1666 .
[10] 王 宇 ,贾志刚 ,李 晓 ,汪 灿 ,余宏明 . 边坡模糊随机可靠性分析的模糊点估计法[J]. , 2012, 33(6): 1795 -1800 .