岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2789-2798.doi: 10.16285/j.rsm.2018.1635

• 岩土工程研究 • 上一篇    下一篇

基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究

袁维1, 2, 3,刘尚各4,聂庆科3,王 伟3, 5   

  1. 1. 石家庄铁道大学 土木工程学院,河北 石家庄 050043;2. 河北省金属矿山安全高效开采技术创新中心,河北 石家庄 050043;3. 河北建设勘察研究院有限公司,河北 石家庄 050031;4. 中交第二公路勘察设计研究院有限公司,湖北 武汉 430056;5. 北京交通大学 土木建筑学院,北京 100044
  • 收稿日期:2018-09-04 出版日期:2019-07-11 发布日期:2019-07-28
  • 通讯作者: 聂庆科,男,1965年生,硕士,正高级工程师,主要从事岩土工程勘察设计方面的工作。E-mail: nieqingke2001@sina.com E-mail: yuanweisuper001@126.com
  • 作者简介:袁维,男,1986年生,博士,副教授,主要从事地质灾害防控方面的工作
  • 基金资助:
    国家自然科学基金(No. 51709176);河北省自然科学基金(No. E2018210046);河北省博士后科研项目择优资助计划(No. B2017003021)。

An approach for determining the critical thickness of the karst cave roof at the bottom of socketed pile based on punch failure mode

YUAN Wei1, 2, 3, LIU Shang-ge4, NIE Qing-ke3, WANG Wei3, 5   

  1. 1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. Hebei Province Technical Innovation Center of Safe and Effective Mining of Metal Mines, Shijiazhuang, Hebei 050043, China; 3. Hebei Research Institute of Construction & Geotechnical Investigation Co., Ltd., Shijiazhuang, Hebei 050031, China; 4. CCCC Second Highway Consultants Co., Ltd., Wuhan, Hubei 430056, China; 5. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-09-04 Online:2019-07-11 Published:2019-07-28
  • Supported by:
    This work was supported by the Natural Science Foundation of China (51709176), the natural Science Foundation of Hebei Province (E2018210046) and Hebei Province Post-doctoral Research Projects Merit-based Funding Program (B2017003021).

摘要: 桩端下伏溶洞顶板厚度是影响嵌岩桩竖向承载力的一个重要影响因素,在工程实践中,我国相关规范要求桩端平面以下的顶板厚度不小于3倍桩径。根据规范确定溶洞顶板厚度具有一定的经验性和笼统性,没有考虑溶洞顶板岩体质量,亦忽略了溶洞自身尺寸的影响。基于桩端岩体的冲切破坏模式,并结合广义Hoek-Brown准则和极限定理上限法建立了溶洞顶板临界厚径比( ,即顶板厚度h/基桩直径d)的计算方法,给出了不同岩体基本质量级别的临界厚径比建议值。结果表明:极限端阻力、岩石坚硬程度和岩体质量均对临界厚径比产生影响,极限端阻力越小、岩体质量越好、岩石越坚硬,则溶洞顶板的临界厚径比越小;以《工程岩体分级标准》(GB/T50218-2014)中岩体基本质量分级为参考依据,I~IV级岩体的临界厚径比建议值分别是I级岩体 、II级岩体 、III级岩体 、IV级岩体 。

关键词: 溶洞顶板, 临界厚径比, 极限分析, Hoek-Brown准则, 嵌岩桩, 竖向承载力

Abstract: The thickness of karst cave roof at the bottom of socketed pile is a significant influence factor on the vertical bearing capacity of the pile. In practice, related engineering standardizations in China request that the thickness of karst cave roof should not be less than 3 times of the pile diameter. Obviously, this method determining the thickness of karst cave roof based on engineering standardizations is empirical and non-specific without consideration of rock-mass quality and karst cave’s size. In this paper, based on punch failure mode of rock mass around the tip of the pile, we develop an approach to determine the critical thickness-diameter ratio of karst cave roof ( , the ratio of karst cave roof’s thickness to pile’s diameter) through generalized Hoek-Brown failure criterion and limit analysis method. In addition, the suggested values of critical thickness-diameter ratio for different classifies quality of engineering rock mass are also supplied. The results show that the ultimate tip resistance, hardness degree of rock and rock-mass quality have significant influence on the critical thickness-diameter ratio. The smaller the ultimate resistance, the better the rockmass quality and the harder the rock, the smaller critical thickness-diameter ratio. Besides, this paper suggests that the critical thickness-diameter ratio for the rock-mass with I~IV quality levels are: for I level, for II level, for III level and for IV level.

Key words: karst cave roof, critical thickness-diameter ratio, limit analysis, Hoek-Brown failure criterion, socketed pile, vertical bearing capacity.

中图分类号: 

  • TU 457
[1] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[2] 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303.
[3] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[4] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[5] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[6] 孙来宾, 肖世国, . 抗滑桩受荷段前侧有限范围地层的 地基抗力系数取值方法[J]. 岩土力学, 2020, 41(1): 278-284.
[7] 刘顺青, 黄献文, 周爱兆, 蔡国军, 姜朋明, . 基于随机块石模型的土石混合边坡稳定性 分析方法研究[J]. 岩土力学, 2019, 40(S1): 350-358.
[8] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[9] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[10] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[11] 任晋岚, 陈曦, 王冬勇, 吕彦楠. 基于广义Hoek-Brown准则的瞬时线性化 强度折减技术[J]. 岩土力学, 2019, 40(12): 4865-4872.
[12] 冯凌云, 朱斌, 代加林, 孔德琼, . 深海管道水平向管−土相互作用 大变形连续极限分析[J]. 岩土力学, 2019, 40(12): 4907-4915.
[13] 吴顺川, 张敏, 张诗淮, 姜日华, . 修正Hoek-Brown准则的等效Mohr-Coulomb 强度参数确定方法研究[J]. 岩土力学, 2019, 40(11): 4165-4177.
[14] 郭红仙, 周 鼎. 软土中基坑土钉支护稳定性问题探讨[J]. 岩土力学, 2018, 39(S2): 398-404.
[15] 徐 鹏,蒋关鲁,邱俊杰,林展展,王智猛,. 基于二楔块法的加筋土挡墙屈服加速度及破坏模式极限分析[J]. , 2018, 39(8): 2765-2770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!