岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3363-3372.doi: 10.16285/j.rsm.2018.1011

• 基础理论与实验研究 • 上一篇    下一篇

泥石流冲击桥墩动力相互作用物理模型试验

王东坡1, 2,陈 政2, 3,何思明2, 3,陈克坚4,刘发明4,李明清4   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 中国科学院、水利部成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,四川 成都 610041;3. 中国科学院大学,北京 100049;4. 中国中铁二院工程集团有限责任公司,四川 成都 610031
  • 收稿日期:2018-06-11 出版日期:2019-09-10 发布日期:2019-09-04
  • 作者简介:王东坡,男,1984年生,博士,博士后,副教授,主要从事山地灾害冲击动力学方面的研究
  • 基金资助:
    国家重点研发计划(No.2017YFC1501003);国家自然科学基金(No.41790433,No.41877266);四川省教育厅科技项目(No.18ZA0043)。

Physical model experiments of dynamic interaction between debris flow and bridge pier model

WANG Dong-po1, 2, CHEN Zheng2, 3, HE Si-ming2, 3, CHEN Ke-jian4, LIU Fa-ming4, LI Ming-qing4   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. China Railway Eryuan Engineering Group Co., Ltd., Chengdu, Sichuan 610031, China)
  • Received:2018-06-11 Online:2019-09-10 Published:2019-09-04
  • Supported by:
    This work was supported by National Key R&D Program of China (2017YFC1501003), the National Natural Science Foundation of China (41790433, 41877266) and the Science and Technology Project of Sichuan Education Department (18ZA0043).

摘要: 在我国西部山区地震、地质活跃带,泥石流灾害对位于泥石流沟道、沟口等位置处的桥墩构成重大威胁。如何量化描述泥石流冲击桥墩的动力过程,是泥石流减灾领域拟要解决的一个重要科学问题。以泥石流灾害威胁成兰铁路沿线桥墩的工程背景为基础,依托大型泥石流模拟系统,进行多组室内大比例泥石流冲击桥墩物理模型试验。研究泥石流流速、流深以及流体特征参数与泥石流冲击压力的相关性。试验结果表明:冲击过程主要受到弗汝德数Fr和雷诺数Re两个无量纲数控制,稀性泥石流冲击压力主要控制参数为Fr,而对于黏性泥石流则同时有Fr和Re的影响;不论是对于峰值冲击力还是冲击功率谱,不同类型泥石流差别显著;在相同重度等条件下,稀性泥石流具有更大的冲击能量;此外,各种类型泥石流通过临界Fr线得到了本质上的区分。研究成果将为桥墩抗泥石流冲击结构设计提供技术支持及科学依据。

关键词: 泥石流, 桥墩, 冲击, 物理模型试验

Abstract: The debris flows are recognised as a major threat to bridge piers located in mountainous gullies, especially in the areas of the active seismological and hydrologic region in Southwest China. It is important to build the dynamic evolution model and quantitatively describe the dynamic process of debris flow impacting bridge pier. In this study, all of the large-scale laboratory tests are conducted by using large multi-functional debris-flow simulation system. The main objectives of our experiments are to find the correlation between impacting pressures and variable factors including velocity, flow depth, and dimensionless characteristic parameters of fluid mechanics and to obtain the dynamic behaviour of bridge pier under the impact of debris flow. The experimental results and dimensionless analysis show that the dynamic process is mainly controlled by two dimensionless numbers of Froude number (Fr) and Reynolds number (Re). Generally, the dimensionless impact pressure is the function of Fr for the low-viscosity debris flows, while for the high-viscosity debris flows, it is the function of both Re and Fr. Different types of debris flows present significant differences in both the peak impacting pressure and impacting power spectrum. Under the same bulk density, the low-viscosity debris flow has greater impact energy than that of the high-viscosity debris flow. In addition, various types of debris flows are essentially distinguished by the critical Fr line. To provide technical support and scientific basis, we analysed the impact signals of different types of debris flows and discussed the mechanism of impact model.

Key words: debris flows, bridge pier, impact, physical model experiment

中图分类号: 

  • TU 457
[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 安笑, 潘华利, 欧国强, 孔玲, 李炳志, . 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学, 2020, 41(S1): 115-122.
[3] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[4] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[5] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[6] 陈光波, 秦忠诚, 张国华, 李谭, 李敬凯, . 受载煤岩组合体破坏前能量分布规律[J]. 岩土力学, 2020, 41(6): 2021-2033.
[7] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[8] 王凯兴, 窦林名, 潘一山, OPARIN V N . 块系岩体非协调动力响应特征试验研究[J]. 岩土力学, 2020, 41(4): 1227-1234.
[9] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[10] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
[11] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[12] 王 岗, 潘一山, 肖晓春, . 单轴加载煤体破坏特征与电荷规律研究及应用[J]. 岩土力学, 2019, 40(5): 1823-1831.
[13] 王登科, 孙刘涛, 魏建平, . 温度冲击下煤的微观结构变化与断裂机制[J]. 岩土力学, 2019, 40(2): 529-538.
[14] 王友彪, 姚昌荣, 刘赛智, 李亚东, 张 迅. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623.
[15] 肖晓春, 樊玉峰, 吴迪, 丁鑫, 王磊, 赵宝友, . 组合煤岩破坏过程能量耗散特征及冲击危险评价[J]. 岩土力学, 2019, 40(11): 4203-4212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!