岩土力学 ›› 2019, Vol. 40 ›› Issue (2): 529-538.doi: 10.16285/j.rsm.2017.1562

• 基础理论与实验研究 • 上一篇    下一篇

温度冲击下煤的微观结构变化与断裂机制

王登科1, 2, 3, 4,孙刘涛1, 3,魏建平1, 3, 4   

  1. 1. 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 454000; 2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 3. 河南理工大学 安全科学与工程学院,河南 焦作 454000; 4. 河南理工大学 煤炭安全生产河南省协同创新中心,河南 焦作 454000
  • 收稿日期:2017-07-25 出版日期:2019-02-11 发布日期:2019-02-14
  • 作者简介:王登科,男,1980年生,博士, 教授,博士生导师,主要从事安全科学与工程的工作。
  • 基金资助:
    深部岩土力学与地下工程国家重点实验室开放基金(No. SKLGDUEK1814);国家自然科学基金(No. 51774118);教育部“创新团队发展计划”(No. IRT_16R22);国家重点研发计划项目(No. 2017YFC0804207);河南省教育厅高校重点科研项目(No. 18A620001);河南理工大学自然科学基金资助项目(No. J2018-1)

Microstructure evolution and fracturing mechanism of coal under thermal shock

WANG Deng-ke1, 2, 3, 4, SUN Liu-tao1, 3, WEI Jian-ping1, 3, 4   

  1. 1. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; 3. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 4. The Collaborative Innovation Center of Coal Safety Production of Henan, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2017-07-25 Online:2019-02-11 Published:2019-02-14
  • Supported by:
    This work was supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1814), the National Natural Science Foundation of China (51774118), the Innovation Team Development Plan of Ministry of Education of China (IRT_16R22), the National Key R&D Program of China(2017YFC0804207), the Key Scientific Research Projects of Henan Provincial Education Department (18A620001) and the Science Research Funds of Henan Polytechnic University (J2018-1).

摘要: 为研究温度冲击下煤的微观结构变化及其损伤断裂机制,以干燥颗粒煤为研究对象,分别开展了煤样的冷冲击和热冷冲击试验。利用扫描电镜(SEM)观测图像结果,分析对比了两种温度冲击前后煤样微观形貌、裂缝分布、开裂和延伸情况,结合断裂力学理论分析了煤样内部微裂缝的开裂机制和扩展方向,并通过ANSYS有限元软件模拟了微裂缝扩展时的应力场和位移场的分布情况,揭示了煤样的断裂机制。研究结果表明,两种温度冲击对煤的结构均造成了不同程度的破坏,温度冲击所形成的热应力最终导致了原始裂纹和新生裂纹的扩展和延伸;温度冲击下所产生的裂纹形式主要有沿晶裂纹、穿晶裂纹、翼型裂纹、交叉裂纹、枝须状裂纹和网状裂纹;分析结果表明,温差愈大,所产生的温度热应力愈大,热冷冲击所产生的裂缝的数量更多、扩展更充分,对煤样的破坏更严重,因此,热冷冲击的破煤效果更好。

关键词: 温度冲击, 微观结构, 断裂机制, 应力强度因子, 破煤效果

Abstract: To study the microstructure change of coal and its damage and fracturing mechanism under temperature shock, cold impact and hot-cold impact tests were carried out on dry granular coal. The micro-morphology, fracture distribution, cracking and extension of coal samples before and after temperature impact were analyzed and compared by scanning electron microscopy (SEM). The cracking mechanism and propagation direction of micro-cracks in coal samples were analyzed based on fracture mechanics theory. The distributions of stress and displacement fields during micro-crack propagation were simulated by ANSYS finite element software to reveal the fracturing mechanism of coal samples. The results showed that the structure of coal was destroyed by two types of temperature shocks, and the thermal stress induced by temperature shocks eventually led to the expansion and extension of the original crack and the new crack. The main types of cracks induced by temperature impact were intergranular crack, transgranular crack, airfoil crack, cross crack, dendritic whisker crack and mesh crack. It is revealed that a bigger temperature difference results in a higher thermal stress. Hot-cold impact can generate more cracks and more extensive crack propagation than cold impact, leading to more serious damage of coal samples. Therefore, the hot-cold impact has better coal breaking effect than the cold impact.

Key words: thermal shock, microstructure, fracture mechanism, stress intensity factor, coal breaking effect

中图分类号: 

  • TD 821
[1] 张俊然, 宋陈雨, 姜彤, 王俪锦, 赵金玓, 熊潭清. 非饱和黄土高吸力下的水力力学特性及微观结构分析[J]. 岩土力学, 2023, 44(8): 2229-2237.
[2] 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603.
[3] 岳豪, 杨胜利, 翟瑞昊, 张燊, 崔轩. 含砂岩石力学特性及其致灾机制研究[J]. 岩土力学, 2023, 44(4): 1230-1244.
[4] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[5] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[6] 雷华阳, 张文振, 霍海峰, 冯双喜, 李其昂, 刘汉磊, . 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346.
[7] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[8] 屈永龙, 杨更社, 奚家米, 何晖, 丁潇, 张猛, . 低温−加载作用下白垩系砂岩的变形 破坏特性试验研究[J]. 岩土力学, 2022, 43(9): 2431-2442.
[9] 刘观仕, 赵守道, 牟智, 莫燕坤, 赵青松, . 结构性对膨胀土收缩特性影响的试验研究[J]. 岩土力学, 2022, 43(7): 1772-1780.
[10] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[11] 张强, 王军保, 宋战平, 冯世进, 张玉伟, 曾涛, . 循环荷载作用下盐岩微观结构变化及经验疲劳模型[J]. 岩土力学, 2022, 43(4): 995-1008.
[12] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[13] 李艳, 程禹翰, 翟越, 魏盛宇, 杨宇冰, 赵瑞峰, 梁文彪, . 高温后花岗岩微观结构演化特性与 动态力学性能研究[J]. 岩土力学, 2022, 43(12): 3316-3326.
[14] 李明玉, 孙文静, 黄强, 孙德安, . 全吸力范围生物炭−黏土混合土的土−水特性[J]. 岩土力学, 2022, 43(10): 2717-2725.
[15] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[2] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[5] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[6] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[7] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[8] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[9] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[10] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .