岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2717-2725.doi: 10.16285/j.rsm.2021.2077

• 基础理论与实验研究 • 上一篇    下一篇

全吸力范围生物炭−黏土混合土的土−水特性

李明玉1,孙文静2,黄强1,孙德安2   

  1. 1. 洛阳理工学院 土木工程学院,河南 洛阳 471023;2. 上海大学 力学与工程科学学院土木工程系,上海 200444
  • 收稿日期:2021-12-09 修回日期:2022-06-23 出版日期:2022-10-19 发布日期:2022-10-17
  • 通讯作者: 黄强,男,1978年生,博士,副教授,硕士生导师,主要从事地下工程的设计与施工。E-mail: 757882635@qq.com E-mail:1609260123@qq.com
  • 作者简介:李明玉,男,1989年生,博士,讲师,主要从事非饱和土力学及环境岩土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 41977214)

Soil-water characteristic of biochar-clay mixture in the full suction range

LI Ming-yu1, SUN Wen-jing2, HUANG Qiang1, SUN De-an2   

  1. 1. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China; 2. Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
  • Received:2021-12-09 Revised:2022-06-23 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41977214).

摘要: 土−水特征曲线在研究非饱和土的水力与力学特性中发挥着重要的作用。生物炭具有多孔结构、高比表面积和强吸附的特性。将生物炭改性土应用于垃圾填埋场上覆盖层,因受自然环境因素的影响会使其水力特性发生改变。为了研究全吸力范围内生物炭掺量对生物炭−黏土混合土保水特性的影响,利用蒸汽平衡法(吸力范围 3~368 MPa)、滤纸法(吸力范围 0 ~40 MPa)和压力板法(吸力范围 0~1.5 MPa)控制土样的吸力,测定吸力平衡后土样的含水率和饱和度,得到全吸力范围内生物炭−黏土混合土的土−水特征曲线。试验结果表明:(1)3种吸力测试方法很好地表达了生物炭−黏土混合土全吸力范围内的土−水特征曲线。(2)生物炭能够影响黏土的保水性,但在一定的吸力范围内,生物炭−黏土混合土的保水性还与孔隙结构和孔隙中水的形态相关。(3)通过压力板法测得,试样的进气值随着生物炭掺量的增加而减小。当吸力值小于进气值时,曲线出现水平段,土样始终处于饱和状态,生物炭掺量越大,试样的保水性越好。(4)由生物炭−黏土混合土微观孔隙结构以及生物炭在黏土中的分布形态来解释生物炭改性黏土的保水能力随生物炭掺量的变化关系。

关键词: 生物炭, 蒸汽平衡法, 压力板法, 滤纸法, 土?水特征曲线, 微观结构

Abstract: Soil-water characteristic curve (SWCC) plays an important role in defining the hydro-mechanical behavior of unsaturated soils. Biochar has the properties of porous structure, high specific surface area and high adsorption. The hydraulic characteristics of biochar-amended soil may change due to the influence of natural environmental factors when applied as the cover layer of landfills. In order to study the effect of biochar content on the water retention behavior of biochar-clay mixture in full suction range, the suction of samples was controlled by vapor equilibrium technique (suction range 3–368 MPa), filter paper method (suction range 0–40 MPa) and pressure plate method (suction range 0–1.5 MPa), and the water content and saturation degree of samples after suction equilibrium were determined. The soil-water characteristic curve of biochar-clay mixtures was obtained in the full suction range. The results showed that: (1) The soil-water characteristic curve in the full suction range of biochar-clay mixtures was effectively expressed by the three suction testing methods. (2) Biochar can affect the water retention behavior of clay, but within a certain range of suction, the water retention behavior of biochar-clay mixtures was also related to the pore structure and the morphology of water in the pores. (3) As measured by the pressure plate method, the air intake value of samples decreased as the biochar content increased. When the suction value was less than the air intake value, a horizontal section appeared in the curve, and the samples were always in the saturated state. The greater the content of biochar, the better the water retention of the sample. (4) The relationship between the water retention capacity of biochar-amended clay and biochar content was explained by the microscopic structure of the biochar-clay mixture and the distribution form of biochar in clay.

Key words: biochar, vapor equilibrium technique, pressure plate method, filter paper method, soil-water characteristic curve, microstructure

中图分类号: 

  • TU 411
[1] 陈勇, 苏剑, 曹玲, 王力, 王世梅, . 基于数据挖掘的土−水特征曲线演化规律研究[J]. 岩土力学, 2022, 43(S2): 23-34.
[2] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[3] 周兵红. 一种预测砂土土-水特征曲线的简化方法[J]. 岩土力学, 2022, 43(S1): 222-228.
[4] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[5] 雷华阳, 张文振, 霍海峰, 冯双喜, 李其昂, 刘汉磊, . 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346.
[6] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[7] 屈永龙, 杨更社, 奚家米, 何晖, 丁潇, 张猛, . 低温−加载作用下白垩系砂岩的变形 破坏特性试验研究[J]. 岩土力学, 2022, 43(9): 2431-2442.
[8] 刘观仕, 赵守道, 牟智, 莫燕坤, 赵青松, . 结构性对膨胀土收缩特性影响的试验研究[J]. 岩土力学, 2022, 43(7): 1772-1780.
[9] 王海曼, 倪万魁, 刘魁, . 延安压实黄土土−水特征曲线的快速预测方法[J]. 岩土力学, 2022, 43(7): 1845-1853.
[10] 高游, 李泽, 孙德安, 于海浩, 陈波, . 考虑初始孔隙比影响的单/双峰土−水特征曲线 模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.
[11] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[12] 张强, 王军保, 宋战平, 冯世进, 张玉伟, 曾涛, . 循环荷载作用下盐岩微观结构变化及经验疲劳模型[J]. 岩土力学, 2022, 43(4): 995-1008.
[13] 李旭, 刘阿强, 刘丽, 刘艳, 吴永康. 全吸力范围内土-水特征曲线的快速测定方法[J]. 岩土力学, 2022, 43(2): 299-306.
[14] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[15] 李艳, 程禹翰, 翟越, 魏盛宇, 杨宇冰, 赵瑞峰, 梁文彪, . 高温后花岗岩微观结构演化特性与 动态力学性能研究[J]. 岩土力学, 2022, 43(12): 3316-3326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .