岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 481-490.doi: 10.16285/j.rsm.2020.0861

• 基础理论与实验研究 • 上一篇    下一篇

基于均匀化理论的含水合物土弹塑性本构模型

梁文鹏1, 2,周家作1, 2,陈盼1, 2,韦昌富1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2020-06-22 修回日期:2020-09-14 出版日期:2021-02-10 发布日期:2021-02-09
  • 通讯作者: 韦昌富,男,1967年生,博士,研究员,博士生导师,主要从事非饱和土和多孔介质理论方面的研究工作。E-mail: cfwei@whrsm.ac.cn E-mail:liangwenpeng_1@163.com
  • 作者简介:梁文鹏,男,1992年生,博士研究生,主要从事含水合物沉积物基本力学性质等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51939011, No. 51639008, No. 41877269)

An elastoplastic constitutive model of gas hydrate bearing sediments based on homogenization theory

LIANG Wen-peng1, 2, ZHOU Jia-zuo1, 2, CHEN Pan1, 2, WEI Chang-fu1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-22 Revised:2020-09-14 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51939011, 51639008, 41877269).

摘要: 将含水合物土视为由土颗粒、孔隙流体及水合物晶体构成的复合材料,其中水合物晶体视为复合材料的夹杂相,其余部分为基质项。分别采用砂土状态相关的临界状态弹塑性模型和弹脆性模型描述基质相和夹杂相的本构关系,同时引入水合物活度因子表示变形过程中可有效承担荷载的水合物的比例。在基质相和夹杂相各自力学性质的基础上,基于细观力学理论中的Eshelby等效夹杂理论和Mori-Tanaka均匀化方法,推导了含水合物土的等效弹塑性刚度矩阵,建立了在不同围压、不同水合物含量及赋存模式等条件下,可考虑含水合物土的赋存模式、强度、应变软化、剪胀等特性的弹塑性本构模型。模型物理意义明确、形式简单且参数易通过简单的室内试验获取。通过已有试验数据对模型进行了验证,结果表明,模型可较好地描述不同试验条件下含水合物土的力学特性。

关键词: 含水合物土, 均匀化理论, 弹塑性, 本构模型

Abstract: Gas hydrate bearing sediments can be regarded as a composite material composed of matrix phase (soil particles, pore water and gas) and inclusion phase (pure hydrate crystals). In this paper, the multi-scale method that is commonly used in the field of composite materials research was adopted to study the mechanical properties of gas hydrate bearing sediments. The constitutive relationship between the matrix and hydrate phases was characterized by the critical state elastoplastic-constitutive model related to the sand state and the elastic-brittle model, respectively. Meanwhile, the factor of hydrate activity was introduced to represent the slip and fracture of hydrate crystals during the triaxial shearing process the proportion of hydrate crystals which can bear the load effectively in the deformation process. Based on Eshelby’s equivalent inclusion theory and Mori-Tanaka method in the meso-mechanics theory, the equivalent elastoplastic stiffness matrix of gas hydrate bearing sediments was derived. And then, an elastoplastic constitutive model of gas hydrate bearing sediments was established considering the occurrence mode, strength, strain softening and dilatancy of gas hydrate bearing sediments under different confining pressures, different gas hydrate bearing sediments contents and different hydrate occurrence modes. The physical meaning of the proposed model was clear, the form was simple, and all the parameters included in the proposed model were easy to be obtained through simple laboratory tests. Finally, the model was verified by the existing experiments data. The results show that the proposed model can well describe the mechanical properties of gas hydrate bearing sediments under different test conditions.

Key words: gas hydrate bearing sediments, homogenization theory, elastoplasticity, constitutive model

中图分类号: 

  • TU 43
[1] 马秋峰, 刘志河, 秦跃平, 田静, 王树立, . 基于能量耗散理论的岩石塑性-损伤本构模型[J]. 岩土力学, 2021, 42(5): 1210-1220.
[2] 时振昊, 黄茂松, 倪雨萍, . 基于颗粒间应变的饱和黏土小应变各向异性 非线性本构模型[J]. 岩土力学, 2021, 42(4): 1036-1044.
[3] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[4] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[5] 陈有亮, 刘耕云, 杜曦, RAFIG Azzam, 吴东鹏, . 考虑膨胀应力和剪胀的深埋隧道弹塑性解[J]. 岩土力学, 2020, 41(8): 2525-2535.
[6] 罗易, 张家铭, 周峙, 契霍特金, 米敏, 沈筠, . 降雨-蒸发条件下土体开裂临界 含水率演变规律研究[J]. 岩土力学, 2020, 41(8): 2592-2600.
[7] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[8] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[9] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[10] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[11] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[12] 侯会明, 胡大伟, 周辉, 卢景景, 吕涛, 张帆. 考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法[J]. 岩土力学, 2020, 41(3): 1056-1064.
[13] 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418.
[14] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[15] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[6] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[7] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[8] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[9] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[10] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .