岩土力学 ›› 2021, Vol. 42 ›› Issue (4): 991-1002.doi: 10.16285/j.rsm.2019.2117

• 基础理论与实验研究 • 上一篇    下一篇

结构性花岗岩残积土三轴试验研究

汪华斌1,周宇1,余刚1, 2,周博1,张爱军3   

  1. 1. 华中科技大学 土木工程与力学学院,湖北 武汉 430074;2. 中南建筑设计院股份有限公司,湖北 武汉 430071; 3. 深圳路桥建设集团有限公司工程技术中心,广东 深圳 518024
  • 收稿日期:2019-12-15 修回日期:2020-08-10 出版日期:2021-04-12 发布日期:2021-04-25
  • 通讯作者: 周博,男,1987年生,博士,副教授,主要从事岩土介质材料多尺度力学行为的试验与模拟研究方面的工作。E-mail: zhoubohust@hust.edu.cn E-mail:huabin@mail.hust.edu.cn
  • 作者简介:汪华斌,男,1968年生,博士,教授,主要从事岩土与地下工程安全性评价与控制理论及应用、滑(边)坡灾害风险管理等。
  • 基金资助:
    国家自然科学基金(No. 41931286,No. 41877233,No. 41672267);深圳市技术攻关项目(重No.20170324)。

A triaxial test study on structural granite residual soil

WANG Hua-bin1, ZHOU Yu1, YU Gang1, 2, ZHOU Bo1, ZHANG Ai-jun3   

  1. 1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Central-South Architectural Design Institute Co., Ltd., Wuhan, Hubei 430071, China; 3. Engineering Technology Center of Shenzhen Road & Bridge Group, Shenzhen, Guangdong 518024, China
  • Received:2019-12-15 Revised:2020-08-10 Online:2021-04-12 Published:2021-04-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41931286, 41877233, 41672267) and the Key Technologies R & D Program of Shenzhen (20170324).

摘要: 花岗岩残积土作为一种特殊土,在我国东南地区分布广泛,但其特殊的结构特性使得该类土体的工程事故频发。针对广东省肇庆市播植县某边坡残积土进行了一系列三轴试验,研究结构性花岗岩残积土在三轴应力状态时的应变和孔压变化特征,以及结构性花岗岩残积土的剪切结构性屈服特性,为相关工程提供借鉴。三轴压缩试验分别针对原状土、重塑正常固结土和重塑超固结土,试验结果表明,原状土和重塑超固结土均表现出一定的结构性,排水剪切时均表现出明显的剪胀性,应力?应变曲线均表现出应变软化,不排水剪切的超静孔压均为先增大后减小,但原状土超静孔压减小的幅度更大;超固结土的不排水抗剪强度符合SHANSEP理论,试验常数 为0.67;重塑正常固结土的归一化刚度随着加载的进行缓慢减小, =15%左右时完全屈服;原状土和重塑超固结土的归一化刚度曲线不能重合,分别于 =1.5%和 =1%左右发生结构性屈服,并且均在 =15%左右发生整体破坏,围压越大,结构性土的刚度曲线变化规律越接近于扰动土。

关键词: 花岗岩残积土, 三轴试验, 切向刚度, 结构性表征

Abstract: As a kind of special soil, granite residual soil is widely distributed in the southeastern part of China and usually leads to engineering accidents due to its special structure. In this paper, a series of triaxle tests was conducted on the slope residual soil from Bozhi County, Zhaoqing City, Guangdong Province, to study the strain and pore pressure characteristics of structural granite residual soil under triaxial stress state as well as the structural yield characteristics of granite residual soil, which could provide useful reference for corresponding projects. Triaxial compression tests were conducted on undisturbed soil, remolded normal consolidated soil and remolded over-consolidated soil. The results showed that both undisturbed soil and remolded over-consolidated soil had certain structural characteristics, and had an obvious dilatancy during the drained shear test. The stress-strain curves of both undisturbed soil and remolded over-consolidated soil showed strain softening. The excess pore pressure of both undisturbed soil and remolded over-consolidated soil increased first and then decreased during the undrained shear test, while the excess pore pressure of undisturbed soil decreased more. The undrained shear strength of over-consolidated soil was consistent with the SHANSEP theory and the test constant was 0.67. The normalized stiffness of remolded normal consolidated soil decreased slowly with loading process going on, and it yielded completely when =15%. The normalized stiffness curves of undisturbed soil and remolded over-consolidated soil were not consistent with each other, and the structural yielding occurs at =1.5% and =1% respectively, and the overall failure occurs at =15%. In addition, the larger the confining pressure was, the more similar the structural curve of the structural soil was to the disturbed soil.

Key words: granite residual soil, triaxial test, tangent stiffness, structural characterization

中图分类号: 

  • TU 441
[1] 刘婕, 张黎明, 丛宇, 王在泉, . 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学, 2021, 42(8): 2069-2077.
[2] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[3] 陈晓斌, 杨宁宇, 朱禹, 张俊麒, 乔世范, . 轮胎衍生骨料级配碎石混合料应力−应变关系 大型三轴试验研究[J]. 岩土力学, 2021, 42(4): 921-931.
[4] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[5] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[6] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[7] 王家全, 畅振超, 唐毅, 唐滢, . 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860.
[8] 姜景山, 左永振, 程展林, 潘家军, . 不同密度粗粒料强度特性的大型真三轴试验[J]. 岩土力学, 2020, 41(8): 2601-2608.
[9] 牛丽思, 张爱军, 王毓国, 任文渊, 赵佳敏, 赵庆玉, . 高易溶盐非饱和伊犁原状黄土的临界状态特性[J]. 岩土力学, 2020, 41(8): 2647-2658.
[10] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[11] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[12] 王康宇, 庄妍, 耿雪玉, . 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
[13] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[14] 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611.
[15] 姜景山, 左永振, 程展林, 潘家军, 张超, 韦有信, . 应力状态对粗粒料力学特性影响的大型真三轴试验[J]. 岩土力学, 2020, 41(11): 3563-3572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[2] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[3] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[4] 查甫生,许 龙,崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. , 2012, 33(3): 652 -658 .
[5] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .
[6] 吕亚茹 ,丁选明 ,孙 甲 ,孔纲强 . 刚性荷载下现浇X形桩复合地基极限承载力特性研究[J]. , 2012, 33(9): 2691 -2696 .
[7] 王洪新 ,孙玉永 . 考虑基坑开挖宽度的杆系有限元算法及试验研究[J]. , 2012, 33(9): 2781 -2787 .
[8] 刘飞禹 ,余 炜 ,蔡袁强 ,张孟喜 . 桩承式加筋地基室内试验及数值分析[J]. , 2012, 33(S1): 244 -250 .
[9] 雍 睿,唐辉明,胡新丽,李长冬,黄 磊. 结构面抗剪强度参数线性拟合方法适用性研究[J]. , 2012, 33(S2): 118 -124 .
[10] 杨 峰,阳军生. 一种二阶锥线性化方法在上限有限元中的应用研究[J]. , 2013, 34(2): 593 -599 .