岩土力学 ›› 2021, Vol. 42 ›› Issue (4): 1065-1077.doi: 10.16285/j.rsm.2020.1210
李亚峰1,聂如松1, 2,李元军3,冷伍明1, 2,阮波1
LI Ya-feng1, NIE Ru-song1, 2, LI Yuan-jun3, LENG Wu-ming1, 2, RUAN Bo1
摘要: 实际列车运营条件下相邻列车间存在一定的时间间隔,因此,列车对路基的长期作用由列车通过时的振动加载和无列车通过时的荷载间歇组成,即间歇性循环荷载。为探究路基在列车间歇性动荷载作用下的变形特性,开展了连续加载与间歇加载(单级、多级加载)的动三轴试验,研究了间歇加载下累积塑性应变的发展规律,并提出了相应的累积塑性应变预测模型。研究结果表明,间歇加载提高了试样抵抗荷载的能力、降低了累积塑性变形的发展;间歇加载下试样的累积塑性应变曲线呈“阶段式”增长,不同于连续加载下累积塑性应变曲线“平顺型”发展的特点;基于时间硬化方法对双曲线模型进行改进,并对间歇加载(单级、多级加载)下稳定型和临界型试样的累积塑性应变进行预测,取得了良好的预测效果。研究结果对于深入分析实际列车荷载作用下路基土体的变形特性和沉降预测具有一定的指导意义。
中图分类号:
[1] | 王滢, 刘嘉怡, 高盟, 孔祥霄, . 地震作用下深海含气能源土动力特性试验研究[J]. 岩土力学, 2025, 46(2): 457-466. |
[2] | 郑思维, 胡明鉴, 霍玉龙, . 钙质砂渗透性影响因素及预测模型[J]. 岩土力学, 2024, 45(S1): 217-224. |
[3] | 肖思奇, 黄科锋, 周红波, . 基于动三轴试验的软黏土软化系数的分析与预测[J]. 岩土力学, 2024, 45(S1): 133-146. |
[4] | 周凤玺, 赵文沧. 基于土−水特征曲线的非饱和冻土未冻水含量预测[J]. 岩土力学, 2024, 45(9): 2719-2727. |
[5] | 张杰, 聂如松, 黄茂桐, 谭永长, 李亚峰, . 道砟嵌入路基土三轴试验及离散元模拟研究[J]. 岩土力学, 2024, 45(6): 1720-1730. |
[6] | 熊树森, 黄蕴晗, 赖莹, . 考虑锚胫作用下拖曳锚在成层土中的嵌入机制[J]. 岩土力学, 2024, 45(5): 1495-1504. |
[7] | 黄锋, 米吉龙, 杨永浩, 董广法, 张班, 刘星辰, . 分级动荷载下土石混合体滞回曲线形态特征试验研究[J]. 岩土力学, 2024, 45(3): 674-684. |
[8] | 贺铮, 谢谟文, 吴志祥, 赵晨, 孙广存, 徐乐, . 应用微芯桩传感器的拉裂型边坡危岩体临崩倾斜变形特征现场实测研究[J]. 岩土力学, 2024, 45(11): 3399-3415. |
[9] | 雷华阳, 薄钰, 马长远, 王磊, 章纬地, . 多因素影响下黏土比热容变化规律及预测模型[J]. 岩土力学, 2023, 44(S1): 1-11. |
[10] | 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683. |
[11] | 张金良, 杨风威, 曹智国, 苏伟林, . 大线速度下超高压水射流破岩试验研究[J]. 岩土力学, 2023, 44(3): 615-623. |
[12] | 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895. |
[13] | 王书文, 鞠文君, 张春会, 苏士杰, 陆闯, . 弹脆性圆形煤巷应力跃升及冲击地压预测模型[J]. 岩土力学, 2023, 44(3): 873-883. |
[14] | 李雪, 王滢, 高盟, 陈青生, 彭晓东, . 地震荷载作用下南海非饱和钙质砂动力特性研究[J]. 岩土力学, 2023, 44(3): 821-833. |
[15] | 李丽华, 张东方, 肖衡林, 王翠英, 邓永锋. 加筋稻壳灰改性土动力特性研究[J]. 岩土力学, 2023, 44(12): 3360-3369. |
|