岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1281-1290.doi: 10.16285/j.rsm.2020.1316

• 基础理论与实验研究 • 上一篇    下一篇

南海珊瑚砂地基承载力模型试验研究

沈扬1,冯照雁1, 2,邓珏1,陈锴嘉1,许俊红3   

  1. 1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;2. 南京汤山温泉旅游度假区管理委员会,江苏 南京 211132; 3. 南京林业大学 土木工程学院,江苏 南京 210037
  • 收稿日期:2020-08-31 修回日期:2020-12-28 出版日期:2021-05-11 发布日期:2021-05-07
  • 作者简介:沈扬,男,1980年生,博士,教授,博士生导师,主要从事土体静动力学特性和本构理论的研究。
  • 基金资助:
    国家自然科学基金项目(No. 51979087)

Model test on bearing capacity of coral sand foundation in the South China Sea

SHEN Yang1, FENG Zhao-yan1, 2, DENG Jue1, CHEN Kai-jia1, XU Jun-hong3   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Nanjing Tangshan Hot Spring Resort Management Committee, Nanjing, Jiangsu 211132, China; 3. School of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • Received:2020-08-31 Revised:2020-12-28 Online:2021-05-11 Published:2021-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979087).

摘要: 珊瑚砂是一种工程性状特殊的土,研究珊瑚砂的承载性能对南海岛礁建设具有重要意义。通过自制平板载荷室内模型装置量化研究珊瑚砂密实度、级配及载荷板的形状、尺寸对珊瑚砂地基承载力影响,并对比了珊瑚砂与石英砂承载力的差异性。试验表明:比对相同密实度的石英砂,珊瑚砂颗粒形态扁平的特征突出、棱角分明,致使内摩擦角增大,也相应引起承载力提升。同荷载下沉降量比前者小得多,且基础对承载力的尺寸效应也明显大于石英砂。而珊瑚砂地基土的应力水平依存系数与相对密实度呈线性相关,内摩擦角受级配影响显著,建立了地基承载力系数Nγ与内摩擦角?之间的关系式。珊瑚砂地基的承载力随载荷板尺寸的增大而增大,方形基础下珊瑚砂地基的承载能力明显高于同面积的圆形基础,且尺寸效应发挥得更明显,说明基础型式在实际工程中有提升承载力的实用意义。在梅耶霍夫公式的基础上提出了适用于珊瑚砂的地基承载力修正公式,提高了珊瑚砂承载力计算结果的准确性。

关键词: 珊瑚砂, 地基承载力, 平板载荷室内模型试验, 基础尺寸效应, 修正公式

Abstract: Coral sand is a type of soil with special engineering properties. It is of great significance to study the bearing capacity of coral sand for construction of islands and reefs in the South China Sea. The influence of density and gradation of coral sand, shape and size of load plate on the bearing capacity of coral sand foundation were quantitatively studied by self-made indoor model device of plate load, and bearing capacities of coral sand and quartz sand were compared. Test results show that, compared with quartz sand with the same density, coral sand has prominent flat features and sharp edges and corners, which leads to an increase of internal friction angle and further leads to an increase of its bearing capacity. Settlement under the same load is much smaller than that of the former, and size effect of foundation on bearing capacity is obviously greater than that of quartz sand. However, dependence coefficient of stress level of coral sand foundation soil is linearly related to its relative density, and internal friction angle is significantly affected by gradation. Relationship between bearing capacity coefficient of foundation Nγ and internal friction angle ? is established. At the same time, the bearing capacity of coral sand foundation increases with the increase of load plate size, and the bearing capacity of coral sand foundation under square foundation is obviously higher than that of circular foundation with the same area, and size effect is more obvious, which shows that the foundation type has practical significance on improving the bearing capacity in practical engineering. Based on the Meyerhof formula, a modified formula of foundation bearing capacity for coral sand is also proposed, which improves the accuracy of calculation results of bearing capacity of coral sand.

Key words: coral sand, foundation bearing capacity, indoor model test of plate load, foundation size effect, modified formula

中图分类号: 

  • TU 411
[1] 刘抗, 陈国兴, 吴琪, 马维嘉, 秦悠, . 循环加载方向对饱和珊瑚砂液化特性的影响[J]. 岩土力学, 2021, 42(7): 1951-1960.
[2] 吕亚茹, 王冲, 黄厚旭, 左殿军, . 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360.
[3] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[4] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[5] 周强, 黎康平, 段亚辉, 曹子君, 李典庆, . 基于广义可靠指标相对安全率的地基承载力 安全判据研究[J]. 岩土力学, 2020, 41(6): 2052-2062.
[6] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[7] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
[8] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[9] 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611.
[10] 崔翔, 胡明鉴, 朱长歧, 汪稔, 王新志, 王天民, . 珊瑚砂三维孔隙微观特性研究[J]. 岩土力学, 2020, 41(11): 3632-3640.
[11] 吴杨, 崔杰, 李能, 王星, 吴毅航, 郭舒洋, . 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191.
[12] 梁珂, 何杨, 陈国兴, . 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31.
[13] 张小燕, 蔡燕燕, 周浩燃, 杨 洋, 李玉龙, . 珊瑚砂大剪切应变下的剪切特性和分形维数[J]. 岩土力学, 2019, 40(2): 610-615.
[14] 王步雪岩, 孟庆山, 韦昌富, 谌民, 阎钶, 张珀瑜, . 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10): 3871-3878.
[15] 方祥位,李晶鑫,李 捷,申春妮,. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. , 2018, 39(S1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[6] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[7] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[8] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[9] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[10] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .