岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 358-364.doi: 10.16285/j.rsm.2021.0440

• 基础理论与实验研究 • 上一篇    下一篇

纳米氧化硅充填红黏土团粒内孔隙的收缩响应

谈云志,王媛,占少虎,左清军,明华军   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2021-03-28 修回日期:2021-11-28 出版日期:2022-02-11 发布日期:2022-02-22
  • 作者简介:谈云志,男,1979年生,博士,教授,主要从事特殊土方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No. 51579137,No. 51979150);湖北省优秀中青年科技创新团队计划项目(No. T201803);湖北省“111引智基地”项目(No. 2018-19-1)

Shrinkage behavior responses to nano-silica filling pores in aggregate laterite

TAN Yun-zhi, WANG Yuan, ZHAN Shao-hu, ZUO Qing-jun, MING Hua-jun   

  1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2021-03-28 Revised:2021-11-28 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51579137, 51979150), the Youth Innovation Team Project of Hubei Province (T201803) and the 111 Project of Hubei Province (2018-19-1).

摘要: 红黏土易失水收缩开裂,不仅降低了其整体强度,还为雨水入渗提供了通道,加剧了其承载能力的弱化。因此,如何抑制红黏土收缩,成为解决问题的关键。纳米氧化硅颗粒尺寸极其细小,隶属纳米范畴。充分发挥纳米氧化硅的尺寸优势,以期纳米氧化硅微粒能够进入红黏土团粒内,抵抗红黏土的失水收缩行为。为此,选用不同干质量掺入比(纳米氧化硅:红黏土分别为0:100、2:100、3.5:100、5:100、6.5:100),将纳米氧化硅混入红黏土后压实成型(干密度1.44 g/cm3和1.46 g/cm3)。比较压实红黏土-纳米氧化硅混合物的收缩特性与孔隙分布情况。试验发现,纳米氧化硅可以抑制红黏土的收缩行为;而且随着掺入量增加,其缩限值也逐渐提高。红黏土-纳米氧化硅混合物的表观形貌照片显示,纳米氧化硅掺量大于5%时,红黏土团粒内孔隙赋存有大量纳米氧化硅颗粒。同时,孔隙分布曲线还表明,分布于孔径0.03 ?m的孔隙明显减少,说明纳米氧化硅主要充填孔径大于0.03 ?m的孔隙。纳米氧化硅改善红黏土的收缩性属于物理方法,有别于石灰处治等化学方式,更具有环境友好的潜在优势。

关键词: 红黏土, 纳米氧化硅, 孔隙, 收缩, 填充

Abstract: The laterite may form cracks due to shrinkage for dehydration. These cracks not only reduce the overall strength, but also provide infiltration channel for rainwater, which intensifies the weakening of its bearing capacity. Therefore, how to inhibit laterite shrinkage is a key problem for engineering applications. The nano-silica particles are extremely fine in size and belong to the nano category. It is proposed to fully utilize the size advantage of nano-silica, so that nano-silica particles can enter the laterite aggregates and resist the shrinkage behavior of laterite caused by dehydration. Therefore, different dry mixing ratios (i.e. nano-silica: laterite = 0: 100, 2: 100, 3.5: 100, 5: 100, and 6.5: 100) were programmed, and nano-silica was mixed with laterite for compaction (dry density is 1.44 g/cm3 and 1.46 g/cm3 respectively). Shrinkage characteristics and pore distribution of compacted laterite-nano-silica mixture were compared. It was found that nano-silica could inhibit the shrinkage of laterite, and the shrinkage limit was also increased by the mixing ratio rising. Besides, plenty of nano-silica particles were found in the pores while the mixing ratio was greater than 5% by means of apparent morphology images. Meanwhile, the pore distribution curve also showed that the pores with diameter at 0.03 ?m reduced significantly, which indicated that nano-silica mainly filled the pores with diameter greater than 0.03 ?m. Adding nano-silica into laterite is a physical method to improve the shrinkage properties, which is different from the chemical methods such as lime treatment and has potential advantages to environmental protection.

Key words: laterite, nano-silica, pore, shrinkage, filling

中图分类号: 

  • TU 446
[1] 金丹丹, 鲁先东, 王炳辉, 施展, 张雷, . 冲击荷载下含夹层饱和砂土孔压变化规律分析[J]. 岩土力学, 2024, 45(4): 1081-1091.
[2] 柳伟, 徐长节, 杜昊东, 朱怀龙, 王长虹, . 基于修正统一硬化模型的超固结非饱和红黏土边坡稳定分析[J]. 岩土力学, 2024, 45(4): 1233-1241.
[3] 马田田, 于海文, 韦昌富, 伊盼盼, 姚传芹, . 物理化学效应对膨胀土收缩特性的影响机制[J]. 岩土力学, 2024, 45(3): 697-704.
[4] 周恩全, 白宇航, 姚缘, 王龙, 陆建飞, . 橡胶混合黏土小应变剪切模量特性试验研究[J]. 岩土力学, 2024, 45(3): 705-713.
[5] 张希栋, 董晓强, 段伟, 谢明星, . 基于纤维加固砂土静力液化评估的超孔隙压力系数研究[J]. 岩土力学, 2024, 45(3): 714-724.
[6] 张思奇, 裴华富, 谭道远, 朱鸿鹄, . 单、双孔隙结构非饱和黏土孔隙分布变化规律试验研究[J]. 岩土力学, 2024, 45(2): 353-363.
[7] 朱寅斌, 李长冬, 周佳庆, 项林语, 姜茜慧, 朱文宇, . 考虑基质渗透性的粗糙单裂隙非达西流动特性研究[J]. 岩土力学, 2024, 45(2): 601-611.
[8] 贾超, 董啸, 丁朋朋, 冯克印, 王辉, 王明珠, . 孔隙型地热储层热固结变形特性试验研究[J]. 岩土力学, 2023, 44(S1): 91-98.
[9] 张达锦, 肖桂元, 武岳, 徐光黎, 刘伟, . 重金属Cu2+驱动下红黏土土体压缩变形机制[J]. 岩土力学, 2023, 44(S1): 127-133.
[10] 程光, 范文, 于宁宇, 姜程程, 陶宜权, . 土−石混合体土−水特性和微观结构的相关性研究[J]. 岩土力学, 2023, 44(S1): 365-374.
[11] 李品良, 许强, 刘佳良, 何攀, 纪续, 陈婉琳, 彭大雷, . 盐分影响重塑黄土渗透性的微观机制试验研究[J]. 岩土力学, 2023, 44(S1): 504-512.
[12] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[13] 傅翔, 黄平, 谢强, 班宇鑫, 苏焓. 不同高孔隙水压砂岩三轴压缩力学特性及多向破裂机制[J]. 岩土力学, 2023, 44(9): 2611-2618.
[14] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[15] 潘家军, 孙向军, 左永振, 王俊鹏, 卢一为, 韩冰. 骨架孔隙比对粗粒土强度变形特性的影响研究[J]. 岩土力学, 2023, 44(8): 2186-2194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 颜天佑,李同春,赵兰浩,季薇薇. 三维边坡稳定分析的有限元弹塑性迭代解法[J]. , 2009, 30(10): 3102 -3108 .
[2] 何 铮,徐卫亚,石 崇,李明卫,赵 谊. 顺层岩质高边坡地震变形破坏机制三维数值反演研究[J]. , 2009, 30(11): 3512 -3518 .
[3] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[4] 关伶俐,田洪铭,陈卫忠. 煤岩力学特性及其工程应用研究[J]. , 2009, 30(12): 3715 -3719 .
[5] 董 捷,张永兴,吴曙光,陈 云. 切方边坡悬臂桩桩间土稳定性研究[J]. , 2009, 30(12): 3881 -3888 .
[6] 薛新华,张我华. 双标量损伤模型及其在Biot固结有限元中的应用[J]. , 2010, 31(1): 20 -26 .
[7] 谢 强,余贤斌,Carlos Dinis da Gama. 时间延迟对劈裂试验条件下岩石凯塞效应的影响[J]. , 2010, 31(1): 46 -50 .
[8] 樊恒辉,孔令伟,李洪良,卢雪清,尹培杰. 马家树水库大坝防渗土料分散性判别和改性试验[J]. , 2010, 31(1): 193 -198 .
[9] 田 威,党发宁,丁卫华,梁昕宇,陈厚群. 适于CT试验的动态加载设备研制及其应用[J]. , 2010, 31(1): 309 -313 .
[10] 李 强,杨 庆,栾茂田,贾景超. 曲线翼型裂纹扩展路径理论分析及试验验证[J]. , 2010, 31(2): 345 -349 .