岩土力学 ›› 2022, Vol. 43 ›› Issue (3): 635-648.doi: 10.16285/j.rsm.2021.0947

• 基础理论与实验研究 • 上一篇    下一篇

基于微形态理论的各向异性散体波动分析

刘洋,于鹏强,徐硕   

  1. 北京科技大学 土木工程系,北京 100083
  • 收稿日期:2021-06-27 修回日期:2021-12-15 出版日期:2022-03-22 发布日期:2022-03-22
  • 作者简介:刘洋,男,1979年生,博士,教授,主要从事土细观力学和砂土液化等方面的科研和教学工作
  • 基金资助:
    国家重点研发计划项目(No.2017YFC0805300)。

Wave propagation in anisotropic granular materials based on micromorphic continua

LIU Yang, YU Peng-qiang, XU Shuo   

  1. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-06-27 Revised:2021-12-15 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2017YFC0805300).

摘要: 基于散粒体微观力学理论,忽略颗粒转动引起的相对位移,考虑颗粒接触的组构各向异性,根据宏微观能量守恒推导得到了散体材料各向异性微形态本构关系,进而通过单位接触方向积分的递推公式推导出了各向异性本构张量表达式;在此基础上,根据哈密顿原理得到了各向异性散体材料的运动平衡方程和边界条件,从而求得了平面波在各向异性散粒体中的传播规律和频散关系,最后对波的频散关系和频率带隙进行了详细的参数分析。研究表明:该模型预测了散体中包含3类12种位移波:3种纵波、6种横波和3种平面内横向剪切波;横观各向同性条件下,接触各向异性参数a20越大,纵波和横波的频率越大,而平面内横向剪切波的频率越小;正交各向异性条件下,随着接触各向异性参数a22的增大,与2方向运动相关的横波频率增大,而与3方向运动相关的横波频率则减小;但a22的变化对纵波频率影响很小。材料各向异性程度对横波带宽影响不大,但对纵波带宽影响较大:a20的增大使得声?光学波间的带宽减小,而光学波间的带宽增大,当a20>0.84时,声?光学波间的带隙消失;但是a22的增大则使得声?光学波间的带宽增大,而光学波间的带宽减小。退化为各向同性模型后,预测3类波的频散曲线与其他各向同性模型的结果基本一致。

关键词: 散粒体, 各向异性, 波动, 微观力学, 微形态

Abstract: Based on the granular micromechanical approach and energy conservation principle, an anisotropic micromorphic constitutive relationship has been obtained for granular materials. It is noted that the particle displacement induced by particle rotation has been ignored. Furthermore, the expressions of anisotropic constitutive tensors are derived through a recursive formula of the unit contact direction integral. On this basis, according to Hamilton’s principle, the motion balance equation and boundary conditions of the anisotropic granular material are derived, and the dispersion relationship of the plane wave can be obtained for the anisotropic granular material. Finally, a detailed parameter analysis is carried out on the dispersion relationship and the frequency band gap. The research shows that: (1) The proposed model predicts that there are three types of waves in the granular materials, which consists of three kinds of longitudinal waves, six kinds of transverse waves and three kinds of in-plane transverse shear waves. For the transverse isotropic condition, the larger the value of the anisotropic parameter a20 is, the higher the frequency of the longitudinal wave and the transverse wave are, and the lower the frequency of the in-plane transverse shear wave is. For the orthogonal anisotropy conditions, with the increase of the anisotropic parameter a22, the frequency of transverse waves corresponding to the kinematics related to the 2-direction increases, whereas the frequency of transverse waves corresponding to the kinematics related to the 3-direction decreases. However, the coefficient a22 has minor effects on the longitudinal wave. (2) The degree of fabric anisotropy has minor effects on the bandwidth of the transverse wave, but it has a greater effect on the bandwidth of the longitudinal wave: the increase of a20 reduces the bandwidth between acousto-optical waves, whereas the bandwidth between optical waves increases. When a20 is greater than 0.84, the band gap between acousto-optical waves disappears. In contrast, the increase of a22 increases the bandwidth between acoustic and optical waves, whereas the bandwidth between optical waves decreases. When simplified to consider the isotropic condition, the dispersion curves of the three types of waves predicted by the proposed model show a good agreement with other benchmark theories.

Key words: granular material, anisotropy, wave propagation, micromechanics, micromorphic

中图分类号: 

  • O343
[1] 蒋中明, 肖喆臻, 唐栋, 何国富, 许卫, . 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047.
[2] 张虎元, 王赵明, 朱江鸿, 周光平, . 混合型缓冲材料砌块渗透性及其各向异性研究[J]. 岩土力学, 2022, 43(3): 573-581.
[3] 宋磊博, 亢倩倩, 杜时贵, 钟振, 王刚, 王兴开, 韩观胜, 赵金帅, . 基于表面微凸体磨损特征演化规律的节 理剪切强度各向异性机制研究[J]. 岩土力学, 2021, 42(9): 2331-2343.
[4] 阙相成, 朱珍德, 牛子豪, 黄浩楠, . 不同截面柱状节理岩体变形及强度各向异性研究[J]. 岩土力学, 2021, 42(9): 2416-2426.
[5] 时振昊, 黄茂松, 倪雨萍, . 基于颗粒间应变的饱和黏土小应变各向异性 非线性本构模型[J]. 岩土力学, 2021, 42(4): 1036-1044.
[6] 陈曦, 曾亚武, . 基于Grasselli模型的一个新的岩石节理三维粗糙度指标[J]. 岩土力学, 2021, 42(3): 700-712.
[7] 谢志南, 王立刚, 章旭斌, 马完君. 斜入射出平面自由波场勒让德谱元时域模拟方法[J]. 岩土力学, 2021, 42(12): 3467-3474.
[8] 刘炳恒, 孔令伟, 舒荣军, 李甜果, . 湛江结构性黏土在三维应力下的 力学特性与强度准则[J]. 岩土力学, 2021, 42(11): 3090-3100.
[9] 何少其, 刘元雪, 杨骏堂, 柏准, 赵久彬, . 库岸堆积层滑坡位移的分量响应模式 及多因子模型[J]. 岩土力学, 2020, 41(8): 2773-2784.
[10] 邹宇雄, 马刚, 李易奥, 陈远, 周伟, 邱焕峰, . 抗转动对颗粒材料组构特性的影响研究[J]. 岩土力学, 2020, 41(8): 2829-2838.
[11] 洪陈杰, 黄曼, 夏才初, 罗战友, 杜时贵, . 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098-2109.
[12] 徐杰, 周建, 罗凌晖, 余良贵, . 高岭-蒙脱混合黏土渗透各向异性模型研究[J]. 岩土力学, 2020, 41(2): 469-476.
[13] 范运辉, 朱其志, 倪涛, 张坤, 张振南, . 基于弹性张量离散化的脆延转变本构模型研究[J]. 岩土力学, 2019, 40(S1): 181-188.
[14] 陈栋, 王恩元, 李楠, . 不同煤岩介质模型的波场特征研究[J]. 岩土力学, 2019, 40(S1): 449-458.
[15] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .