岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 317-326.doi: 10.16285/j.rsm.2022.0200

• 数值分析 • 上一篇    

基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟

王情玉1,滕继东1, 2,钟宇1,张升1, 2,盛岱超1, 2, 3   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 中南大学 高速铁路建造技术国家工程研究中心,湖南 长沙 410075; 3. 悉尼科技大学 土木与环境工程学院,澳大利亚 悉尼
  • 收稿日期:2022-02-22 接受日期:2022-03-23 出版日期:2023-01-16 发布日期:2023-01-13
  • 通讯作者: 滕继东,男,1987年生,博士,教授,主要从事非饱和土、寒区岩土工程方面的研究。E-mail: jdteng@csu.edu.cn E-mail:wqy200105@163.com
  • 作者简介:王情玉,女,1996年生,硕士研究生,主要从事冻土水分迁移与相变的数值研究工作。
  • 基金资助:
    国家自然科学基金(No. 52178376,No. 51878665,No. U1834206);湖南省湖湘青年英才项目(No. 2020RC3008);中南大学创新驱动青年人才项目(No. 2020CX034);中南大学中央高校基本科研业务费专项资金(No. 2021zzts0791)。

Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method

WANG Qing-yu1, TENG Ji-dong1, 2, ZHONG Yu1, ZHANG Sheng1, 2, SHENG Dai-chao1, 2, 3   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. National Engineering Research Center of High-speed Railway Construction Technology, Central South University, Changsha, Hunan 410075, China; 3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
  • Received:2022-02-22 Accepted:2022-03-23 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178376, 51878665, U1834206), the Program of Youth Talent Support for Hunan Province (2020RC3008), the Innovation Driven Project of Central South University (2020CX034) and the Fundamental Research Funds for the Central Universities of Central South University (2021zzts0791).

摘要: 路基冻胀问题严重影响寒区高速铁路的安全服役,而成冰相变过程是解释冻胀机制的关键。基于介观尺度的格子Boltzmann方法,将修正的孔隙水冻结温度算法与焓法固液相变格子Boltzmann模型相结合,模拟了悬浮液滴冻结和冻土孔隙水成冰两个过程,分别揭示了液态水在自由状态和孔隙束缚状态下冰水相变的细观机制。计算结果表明:土体孔隙中冰晶由中心向外生长的过程与悬浮在空气中的液滴冻结过程截然不同,并且孔隙水越接近颗粒表面,其冻结温度越低。相同粒径颗粒按照不同排列方式得到的冻结特征曲线(soil freezing characteristic curves,简称SFCC)具有明显差异;不同粒径的SFCC随着颗粒增大残余水含量逐渐变少,形态更加陡峭。通过与文献试验结果对比,验证了格子Boltzmann方法的有效性,表明该方法能够为研究多孔介质水气迁移与相变过程提供介观尺度的新手段。

关键词: 格子Boltzmann方法, 液滴冻结, 冻土, 孔隙成冰, 数值模拟

Abstract: The frost heave of subgrade has an important effect on the operation of high-speed railway in cold regions, while the ice-water phase transition is the key to understanding the mechanism of frost heave. The lattice Boltzmann method is applied in this study, which is a mesoscale numerical method. The modified freezing temperature algorithm of pore water is combined with the enthalpy-based lattice Boltzmann phase transition model. Two freezing processes including the freezing of suspended droplets and the formation of pore water into ice in frozen soil are investigated, which aim to reveal the mesoscopic mechanism of the ice-water phase transition in free state and pore-bound state, respectively. The numerical results show that the process of ice crystals growing from the inside to the outside in the pores is completely opposite to the freezing process of droplets suspended in the air, and the pore water has a lower freezing temperature when it is closer to the surface of the soil particles. The soil freezing characteristic curves (SFCCs) differ obviously for the particles with the same size but in different particle arrangements. Meanwhile, the morphology of SFCC becomes steeper with increasing soil particle size, and the residual water content gradually decreases. The numerical results of the ice-water phase transition process are validated by measured data in the literature, which indicate that the lattice Boltzmann method can provide a new tool to study the water-gas migration and phase transformation process in porous media in mesoscale.

Key words: lattice Boltzmann method, droplet freezing, frozen soil, pore ice formation, numerical simulation

中图分类号: 

  • TU 411
[1] 黄生根, 张义, 霍昊, 陈常青. 软土地区深基坑支护工程格构柱变形规律研究[J]. 岩土力学, 2023, 44(增刊): 533-538.
[2] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(增刊): 623-633.
[3] 张革, 曹玲, 王成汤, . 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用[J]. 岩土力学, 2023, 44(增刊): 645-654.
[4] 乔亚飞, 闫凯, 赵腾腾, 丁文其, . 软土地区超深圆形竖井的坑底隆起特性与机制[J]. 岩土力学, 2023, 44(9): 2707-2716.
[5] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[6] 李博南, 符伟, 张雪冰, . 高温、高含冰量冻土中弹性波的传播特性[J]. 岩土力学, 2023, 44(7): 1916-1924.
[7] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[8] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[9] 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810.
[10] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[11] 张明礼, 雷兵兵, 周志雄, 周凤玺, 侯彦东, . 考虑雨水感热的降雨对多年冻土水热变化影响模型研究[J]. 岩土力学, 2023, 44(5): 1530-1544.
[12] 梁靖宇, 沈万涛, 路德春, 齐吉琳, . 考虑沉积角影响的冻结砂土单轴压缩试验研究[J]. 岩土力学, 2023, 44(4): 1065-1074.
[13] 王春, 胡慢谷, 王成, . 热−水−力作用下圆孔花岗岩的动态损伤特征及结构模型[J]. 岩土力学, 2023, 44(3): 741-756.
[14] 蒋汇鹏, 马强, 曹亚鹏, . P波在弹性介质与饱和冻土介质分界面上的透反射问题研究[J]. 岩土力学, 2023, 44(3): 916-929.
[15] 张正哲, 贾科敏, 许成顺, 潘汝江. 倾斜液化场地−桩基−结构体系在近场脉冲与非脉冲地震动下地震响应差异分析[J]. 岩土力学, 2023, 44(12): 3629-3638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 乾增珍,鲁先龙,丁士君. 风积沙地基斜柱基础上拔水平力组合荷载试验[J]. , 2009, 30(1): 257 -260 .
[2] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[3] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[4] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[5] 黄小兰 ,杨春和 ,陈 锋 ,李银平 ,李应芳. 潜江地区层状盐岩天然气储库密闭性评价研究[J]. , 2011, 32(5): 1473 -1478 .
[6] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[7] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[8] 萧富元 ,王建力 ,邵厚洁. 深埋脆性岩石力学参数评估与变形特性探讨[J]. , 2011, 32(S2): 109 -114 .
[9] 刘奉银 ,张 昭 ,周 冬 ,赵旭光 ,朱 良. 密度和干湿循环对黄土土-水特征曲线的影响[J]. , 2011, 32(S2): 132 -136 .
[10] 张先伟 ,王常明 ,李军霞 . 软土固结蠕变特性及机制研究[J]. , 2011, 32(12): 3584 -3590 .