岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 834-842.doi: 10.16285/j.rsm.2022.00229

• 基础理论与实验研究 • 上一篇    下一篇

基于现场试井数据和岩心驱替试验的采油初期渗透率演化规律

KOZHEVNIKOV V. Evgenii1, TURBAKOV S. Mikhail1, RIABOKON P. Evgenii1, GLADKIKH A. Evgeniy1, POPLYGIN V. Vladimir1, GUZEV A. Mikhail2,   

  1. 1. 彼尔姆国立科研理工大学 石油和天然气技术系,俄罗斯 彼尔姆 614990; 2. 俄罗斯科学院远东分院应用数学研究所,俄罗斯 符拉迪沃斯托克 690041;3. 北京建筑大学 土木与交通工程学院,中国 北京 100044
  • 收稿日期:2022-03-28 接受日期:2023-02-01 出版日期:2023-03-21 发布日期:2023-03-24
  • 作者简介:KOZHEVNIKOV V. Evgenii,男,1991年生,博士,副教授,主要从事于石油工程与岩心测试工作。
  • 基金资助:
    俄罗斯科学基金(No.19-79-10034)

Permeability evolution in the initial period of oil production based on field well test data and coreflooding tests

KOZHEVNIKOV V. Evgenii1, TURBAKOV S. Mikhail1, RIABOKON P. Evgenii1, GLADKIKH A. Evgeniy1, POPLYGIN V. Vladimir1, GUZEV A. Mikhail2, QI Cheng-zhi3   

  1. 1. Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm 614990, Russia; 2. Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; 3. Civil and Transportation School, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2022-03-28 Accepted:2023-02-01 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the Russian Science Foundation(19-79-10034).

摘要: 油气开采过程中渗透率预测是一个非常重要的问题。由于油气储量衰竭导致渗透率降低,储层压力下降(有效压力增加),导致油气生产时间增加。对有效压力导致渗透率降低的问题进行了大量研究,主要是通过各种方法建立渗透率模型,如岩心驱替试验和现场试井。前期研究结果表明,渗透率对有效压力具有幂律或指数依赖性,然而,预测渗透率的困难在于滞后现象,其原因尚不完全清楚。一些学者利用储层力学模型模拟渗透率以及解释滞后的原因,但该模型在油气生产初期有效压力波动较小时并不适用。在这项工作中,分析Perm地区北部一个油田的试井数据得出:生产初期的储层渗透率很大程度上取决于流体产出量。基于陆相储层的试井数据,得到一个描述采油初期渗透率变化的模型。为验证该模型,根据专门开发的程序对陆相储层样品进行岩心驱替试验。岩心驱替结果表明,从试井数据中获得的模型具有高收敛性。利用计算机断层扫描(computed tomography,简称CT)和扫描电镜(scanning electron microscope,简称SEM)研究岩心孔隙的属性和结构,发现天然胶体的迁移是生产初期低黏土岩石渗透率下降的主要原因。

关键词: 渗透率, 渗透率滞后, 胶体迁移, 岩心驱替, 多孔介质

Abstract: Permeability prediction during hydrocarbon production is a rather important problem. The decrease in permeability due to depletion reserves and the drop in reservoir pressure (increase in effective pressure) leads to an increase in the time of oil or gas production. A large number of works have been devoted to the problem of permeability reduction due to effective pressure. Establishment of permeability models is carried out by various methods including coreflooding tests and field well tests. The results of previous studies have shown that permeability has a power-law or exponential dependence on effective pressure, however, the difficulty in predicting permeability is due to hysteresis, the causes of which remain not fully understood. To model permeability, as well as explain the causes of hysteresis, some authors use mechanical models of the reservoir, which cannot be applied with small fluctuations in effective pressures in the initial period of hydrocarbon production. In this work, we analyzed data from well tests at one of the fields in the north of the Perm region and came to the conclusion that in the initial period of production, the permeability of the reservoirs largely depends on the amount of fluid produced. Based on the well test data of the terrigenous reservoir, a model was obtained that describes the change in permeability in the initial period of oil production. To confirm the model, coreflooding tests of samples of the terrigenous reservoir were carried out according to a specially developed program. Coreflooding results showed high convergence of the model obtained from well test data. With computed tomography (CT) and scanning electron microscope (SEM), the properties and structure of the pore space of the cores were studied and it was found that the main reason for the decrease in the permeability of low-clay rocks in the initial period of production is the migration of natural colloids.

Key words: permeability, permeability hysteresis, colloids migration, coreflooding, porous media

中图分类号: 

  • TU451
[1] 甘磊, 刘玉, 张宗亮, 沈振中, 马洪影, . 岩体裂隙粗糙度表征及其对裂隙渗流特性的影响[J]. 岩土力学, 2023, 44(6): 1585-1592.
[2] 赵艳, 杨柳, 奚茹茹, 耿振坤, 张谦, 马雄德, . 基于核磁共振和磁共振成像的低渗透岩芯CO2-H2O两相驱替特征研究[J]. 岩土力学, 2023, 44(6): 1636-1644.
[3] 蒋长宝, 余塘, 魏文辉, 段敏克, 杨阳, 魏财, . 加卸载应力作用下煤岩渗透率演化模型研究[J]. 岩土力学, 2022, 43(S1): 13-22.
[4] 毛彦军, 陈曦, 范超男, 葛少成, 李文璞, . 基于CT三维重建的注水煤岩体裂隙扩展规律研究[J]. 岩土力学, 2022, 43(6): 1717-1726.
[5] 林丹彤, 胡黎明. 多孔介质中磷负载纳米铁运动特性的模型试验[J]. 岩土力学, 2022, 43(2): 337-344.
[6] 路乔, 杨智超, 杨志全, 于荣霞, 朱颖彦, 杨溢, 张碧华, 王仁超, 方迎潮, 余东亮, 刘浩, 苏建坤, . 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43(2): 385-394.
[7] 田佳丽, 王惠民, 刘星星, 向雷, 盛金昌, 罗玉龙, 詹美礼. 考虑不同尺度孔隙压缩敏感性的 砂岩渗透特性研究[J]. 岩土力学, 2022, 43(2): 405-415.
[8] 张磊, 田苗苗, 曾世攀, 郭鲁成, 卢硕, 唐俊, . 液氮溶浸对不同煤阶含水煤样渗流特性的影响[J]. 岩土力学, 2022, 43(11): 3015-3026.
[9] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[10] 马鹏飞, 李树忱, 王修伟, 周慧颖, 王曼灵, 赵一民. 多孔介质渗流过程的非局部近场动力学模拟方法[J]. 岩土力学, 2021, 42(11): 3147-3156.
[11] 张宏学, 刘卫群, . 非平衡解吸状态下页岩气储层渗透率演化机制[J]. 岩土力学, 2021, 42(10): 2696-2704.
[12] 贺文海, 王通. 二维饱和土体动态孔隙率及相关动力响应特性研究[J]. 岩土力学, 2020, 41(8): 2703-2711.
[13] 侯晓萍, 陈胜宏. 采用复合单元法模拟裂隙多孔介质变饱和流动[J]. 岩土力学, 2020, 41(4): 1437-1446.
[14] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[15] 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[10] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .