岩土力学 ›› 2023, Vol. 44 ›› Issue (8): 2297-2307.doi: 10.16285/j.rsm.2022.1373
李文炜1,占鑫杰2, 3,王保田1,朱群峰2,许小龙2,左晋宇1,王家辉1
LI Wen-wei1, ZHAN Xin-jie2, 3, WANG Bao-tian1, ZHU Qun-feng2, XU Xiao-long2, ZUO Jin-yu1, WANG Jia-hui1
摘要: 为系统研究冲击碾压过程中松散堰塞坝料的细观密实机制,基于自行设计的可视化冲击碾压模型装置及粒子图像测速技术,研究了不同冲击碾压参数对堰塞坝料地基的表面变形、内部变形及颗粒位移规律的影响。试验结果表明,冲击碾压加固过程是冲击和碾压两者共同作用,由于水平冲击作用,冲击点下方地基的变形具有非对称性。“高速轻轮”的施工参数会强化冲击效果,弱化碾压效果,造成地基表面平整性差。堰塞坝料冲击轮加固过程中的最大位移发生在三边形冲击轮圆弧面较平滑处与土体接触时,随后由于模型冲击轮重心上升,地基出现部分弹性回弹。提高冲击轮的牵引速度能够促进冲击能量向深层传递,但水平影响宽度有限;提高冲击轮的质量则能促进能量向两侧水平方向传递,但影响深度有限。对于模型试验的易贡堰塞坝料地基,冲击碾压最佳牵引速度约为0.75 m/s。结果可为堰塞坝料地基的冲击碾压浅层加固提供理论依据。
中图分类号:
[1] | 齐添, 孔剑捷, 刘飞禹. 循环剪切对格栅−土石混合体界面特性的影响[J]. 岩土力学, 2023, 44(9): 2593-2602. |
[2] | 高燕, 余骏远, 陈庆, 史天根, . 侧限条件下密实砂土蠕变的颗粒运动特征[J]. 岩土力学, 2023, 44(5): 1385-1394. |
[3] | 张振坤, 张冬梅, 李江, 吴益平, . 基于多头自注意力机制的LSTM-MH-SA滑坡 位移预测模型研究[J]. 岩土力学, 2022, 43(S2): 477-486. |
[4] | 睢博栋 . 单根垂直旋喷桩施工引起土体位移的预测方法[J]. 岩土力学, 2022, 43(S1): 513-520. |
[5] | 姜宇航, 王伟, 邹丽芳, 王如宾, 刘世藩, 段雪雷, . 基于粒子群−变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究[J]. 岩土力学, 2022, 43(S1): 601-612. |
[6] | 阮升, 金亚兵, 徐晶鑫, 孙勇, . 非对称荷载单层对撑基坑计算方法研究[J]. 岩土力学, 2022, 43(8): 2296-2304. |
[7] | 唐正, 王洪新, 孙德安, 张骁, . 大断面管幕法隧道群管顶进的地表位移规律研究[J]. 岩土力学, 2022, 43(7): 1933-1941. |
[8] | 柴华友, 柯文汇, 柴扬斐, 朱红西, 王贤达, 刘欢. 地下浅部异质体对表面波场谱扰动分析[J]. 岩土力学, 2022, 43(6): 1683-1693. |
[9] | 王家全, 祁航翔, 林志南, 唐毅, . 基于数字图像分析的土工合成材料加筋砂土拉拔试验研究[J]. 岩土力学, 2022, 43(12): 3259-3269. |
[10] | 邓泽之, 吉恩跃, 王刚, . 波动水力条件下土体内侵蚀特性的 透明土试验研究[J]. 岩土力学, 2022, 43(10): 2726-2734. |
[11] | 郭聚坤, 王瑞, 寇海磊, 魏道凯, 卞贵建, 雷胜友, . 基于三维数字图像相关技术钙质砂颗粒运动行为试验研究[J]. 岩土力学, 2022, 43(10): 2785-2798. |
[12] | 徐琨鹏, 景立平, 程新俊, 梁海安, 宾佳. 基于边界位移法的地下结构推覆试验可行性研究[J]. 岩土力学, 2022, 43(1): 127-138. |
[13] | 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126. |
[14] | 李博, 崔逍峰, 莫洋洋, 邹良超, 伍法权, . 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850-1860. |
[15] | 何江, 肖世国, . 多级拼装悬臂式挡墙地震永久位移计算方法[J]. 岩土力学, 2021, 42(7): 1971-1982. |
|