岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2471-2484.doi: 10.16285/j.rsm.2022.1444

• 基础理论与实验研究 •    下一篇

深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析

孙闯1,兰思琦1,陶琦2,关喜彬2,韩希平2   

  1. 1 辽宁工程技术大学 土木工程学院,辽宁 阜新 123000;2. 中铁十九局集团第六工程有限公司,江苏 无锡 214000
  • 收稿日期:2022-09-17 接受日期:2023-02-23 出版日期:2023-09-11 发布日期:2023-09-02
  • 作者简介:孙闯,男,1983年生,博士,教授,博士生导师,主要从事隧道及地下工程方面的研究工作。
  • 基金资助:
    国家重点研发计划资助项目(No.2017YFC1503101);国家自然科学基金资助项目(No.51704144);辽宁省“兴辽英才计划”资助项目(No.XLYC1807107)

Upper bound analysis of three-dimensional progressive collapse mechanism of deep tunnel roof with weak surrounding rock

SUN Chuang1, LAN Si-qi1, TAO Qi2, GUAN Xi-bin2, HAN Xi-ping2   

  1. 1. School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. China Railway 19th Bureau Group Sixth Engineering Co. Ltd, Wuxi, Jiangsu 214000, China
  • Received:2022-09-17 Accepted:2023-02-23 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Key R&D Projects (2017YFC1503101), the National Natural Science Foundation of China (51704144) and the Liaoning Province “Xingliao Talent Program” Funding Project (XLYC1807107).

摘要: 隧道拱顶塌方是一个渐进性破坏的过程,为研究深埋隧道软弱围岩拱顶渐进性塌落特征,基于极限分析上限定理和非线性Hoek-Brown破坏准则,建立了深埋隧道三维渐进性塌落机制,推导了考虑孔隙水压力作用下的塌方全过程塌落体曲面解析解,绘制了拱顶渐进性塌落形态三维曲面图,分析了相关参数单一变化时塌落体形态特征以及不同孔隙水压力作用下各参数对塌落体重力和隧道支护力的影响规律。结果表明:表征岩体特征的无量纲参数、重度、孔隙水压力和岩体抗拉强度对渐进性塌方塌落体形态、重力和支护力有显著影响;深埋隧道围岩物理力学参数在渐进性塌方过程中逐渐减弱,主要体现为岩体强度随变形的发展逐渐衰减直至一个残余值,围岩强度的衰减情况和残余强度大小对塌落体重力和隧道支护力有一定影响。理论计算得到的隧道拱顶塌落形态与实际隧道工程F3断层破碎带隧道拱顶塌方范围基本吻合,验证了理论计算结果对预测隧道拱顶渐进性塌方塌落体范围的适用性,研究成果可为软弱围岩深埋隧道施工设计及安全防护提供理论依据。

关键词: 隧道工程, 软弱围岩, 渐进性破坏, 三维塌落机制, 上限分析

Abstract:

Tunnel roof collapse is a progressive failure process. In order to study the progressive collapse characteristics of deep tunnel roof with weak surrounding rock, we establish the three-dimensional progressive collapse mechanism of deep tunnel based on the limit analysis upper bound theorem and nonlinear Hoek-Brown failure criterion, derive the analytical solution of collapse surface in the whole process considering pore water pressure, and draw the three-dimensional surface diagram of roof progressive collapse. Furthermore, we analyze the morphological characteristics of the collapsed body when the relevant parameters are varied singularly, and the influence of each parameter on the collapsed body gravity and tunnel support force under different pore water pressures. The results show that the dimensionless parameters characterizing the rock mass, unit weight, pore water pressure and tensile stress have significant effects on the morphology, gravity and support force of progressive collapse. In the process of progressive collapse of deep tunnel, the physical and mechanical parameters of surrounding rock gradually weaken, which is mainly reflected in the gradual attenuation of the rock strength with the development of deformation up to a residual value. The attenuation of the strength of surrounding rock and the residual strength have a certain influence on the collapse gravity and tunnel support force. The theoretically calculated collapse shape of tunnel roof is basically consistent with the collapse range of tunnel roof in the F3 fault fracture zone of actual tunnel engineering, which verifies the applicability of the theoretical results for predicting the collapse range of tunnel roof progressive collapse. The research results can provide a theoretical basis for the construction design and safety protection of deep tunnel with weak surrounding rock.

Key words: tunnel engineering, weak surrounding rock, progressive collapse, three-dimensional collapse mechanism, upper bound analysis

中图分类号: 

  • U451
[1] 周晓敏, 马文著, 张松, 宋宜祥, 刘勇, 和晓楠, . 渗流条件下隧道锚注复合围岩体的解析方法[J]. 岩土力学, 2023, 44(增刊): 206-220.
[2] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[3] 阮永芬, 张虔, 乔文件, 裴利华, 闫明, 郭宇航, . 基于C-V-T模型的盾构穿越既有桥梁施工风险评估[J]. 岩土力学, 2023, 44(2): 552-562.
[4] 崔光耀, 麻建飞, 宁茂权, 唐再兴, 刘顺水, 田宇航, . 超大矩形顶管盾构隧道近接下穿高铁施工 加固方案对比分析[J]. 岩土力学, 2022, 43(S2): 414-424.
[5] 董建华, 徐斌, 吴晓磊, 连博, . 隧道分级让压支护作用下围岩 弹塑性变形全过程解析[J]. 岩土力学, 2022, 43(8): 2123-2135.
[6] 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807.
[7] 袁帅, 冯德旺, 张森豪, 邢运鹏, 柯尊启, . 考虑水力参数空间变异性的盾构 隧道开挖面稳定性分析[J]. 岩土力学, 2022, 43(11): 3153-3162.
[8] 屈春来, 付迪, 刘世伟, 冷先伦, 李建贺, 孙熇远. 非均质成层边坡极限承载力上限分析[J]. 岩土力学, 2022, 43(10): 2923-2932.
[9] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[10] 吴奔, 刘维, 史培新, 付春青. 盾构隧道掘进面失稳螺旋破坏机制分析[J]. 岩土力学, 2021, 42(3): 767-774.
[11] 孙志豪, 谭晓慧, 孙志彬, 林鑫, 姚玉川, . 基于上限分析的空间变异土质边坡可靠度[J]. 岩土力学, 2021, 42(12): 3397-3406.
[12] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[13] 严健, 何川, 晏启祥, 许金华. 雀儿山隧道冰碛地层冻胀力原位测试及计算分析[J]. 岩土力学, 2019, 40(9): 3593-3602.
[14] 于 正, 杨龙才, 张 勇, 赵 伟, . 考虑地层变异特征一致性的围岩变形不确定性分析[J]. 岩土力学, 2019, 40(5): 1947-1956.
[15] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .