岩土力学 ›› 2023, Vol. 44 ›› Issue (11): 3099-3108.doi: 10.16285/j.rsm.2023.0652

• 基础理论与实验研究 • 上一篇    下一篇

基于连续-非连续分析理论的隧道围岩破坏区判识方法研究

肖明清1, 2,徐晨1, 2,杨剑1, 2,吴佳明1, 2,付晓东3,周永强3   

  1. 1. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063;2. 水下隧道技术国家地方联合工程研究中心,湖北 武汉 430063; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2023-05-24 接受日期:2023-09-10 出版日期:2023-11-28 发布日期:2023-11-28
  • 通讯作者: 周永强,男,1990年生,博士,副研究员,主要从事岩土力学与工程稳定性研究工作。E-mail: yqzhou@whrsm.ac.cn E-mail:tsyxmq@163.com
  • 作者简介:肖明清,男,1971年生,博士,正高级工程师,主要从事隧道与地下工程的设计与研究工作。
  • 基金资助:
    国家重点研发计划(No. 2021YFB2600400)

Study on the identification method of tunnel surrounding rock failure zone based on continuous discontinuous analysis theory

XIAO Ming-qing1, 2, XU Chen1, 2, YANG Jian1, 2, WU Jia-ming1, 2, FU Xiao-dong3, ZHOU Yong-qiang3   

  1. 1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China; 2. National & Local Joint Engineering Research Center of Underwater Tunneling Technology, Wuhan, Hubei 430063, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2023-05-24 Accepted:2023-09-10 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work was supported by the National Key Research and Development Program (2021YFB2600400).

摘要:

准确分析隧道挖破坏区的范围对合理确定支护参数有着重要的指导作用和工程意义,主要围绕连续介质分析方法和以有限元-离散元耦合方法(finite element-discrete element coupling method,简称FDEM)为代表的连续-非连续方法开展了隧道围岩破坏区判识方法研究。研究了连续介质分析方法与FDEM识别围岩破坏的判别标准;将岩体划分为弹性的岩石单元和弹塑性的界面单元,基于等效连续模型的思想,推导了界面单元力学参数与岩石单元及岩体单元力学参数的关系表达式,首次建立这两种方法参数取值的联系,解决了连续-非连续方法取值难的问题;对比了两种方法模拟不同岩性、断面铁路隧道开挖过程中围岩破坏区范围。基于规范中各级围岩的力学参数取值范围,给出了各级围岩下以FDEM中罚参数和断裂能等围岩主要破坏参数的取值范围;FLAC3D为代表的连续介质方法和FDEM两种方法对不同岩性、断面铁路隧道开挖过程模拟结果表明,连续介质方法得出的塑性区和以塑性极限应变得出的破坏区域和连续-非连续方法得出的裂纹扩展区和破坏区在分布范围、形态及破坏形式上基本一致,验证了提出的FDEM围岩破坏参数取值方法是合理可行的。

关键词: 连续-非连续分析方法, FDEM, 隧道, 破坏区识别, 参数取值, 连续介质分析方法

Abstract:

Accurate analyzing the scope of tunnel excavation failure zone has important guidance and engineering significance in determining support parameters reasonably. This study focuses on the identification methods of tunnel surrounding rock failure zone, specifically the continuous medium analysis method and the continuous-discontinuous method represented by the finite element-discrete element coupling method (FDEM). Firstly, the continuous medium analysis method and FDEM identification criteria for surrounding rock failure are studied. Then the rock mass is divided into elastic rock elements and elastic-plastic interface elements. Based on the concept of equivalent continuous model, the relationship between the mechanical parameters of interface elements and rock elements and rock mass element is mathematically derived. The connection between the parameter values of these two methods is established for the first time, resolving the challenge of determining values in the continuous-discontinuous method. Finally, the ranges of surrounding rock failure zones simulated by these two methods during the excavation process of railway tunnels with different lithology and cross-sections are compared. According to the range of mechanical parameters for each level of surrounding rock mass in the specification, the range of values for the main failure parameters of surrounding rock, such as penalty parameter and fracture energy, in FDEM, is given for each level of surrounding rock. The simulation results of railway tunnel excavation with different lithology and cross sections using the continuous medium method represented by FLAC3D and FDEM method show that the plastic zone obtained by the continuous medium method, and the failure zone obtained by the plastic limit strain, as well as the crack growth zone and failure zone obtained by the continuous-discontinuous method, are generally consistent in terms of distribution range, shape and failure mode. The method proposed in this article for determining the failure parameters of surrounding rock in FDEM is verified as reasonable and feasible.

Key words: continuous-discontinuous method, FDEM, tunnel, identification of failure zone, parameter values, continuous medium analysis method

中图分类号: 

  • TU 451
[1] 冯海洲, 蒋关鲁, 何梓雷, 郭玉丰, 胡金山, 李杰, 袁胜洋, . 预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究[J]. 岩土力学, 2023, 44(增刊): 50-62.
[2] 周晓敏, 马文著, 张松, 宋宜祥, 刘勇, 和晓楠, . 渗流条件下隧道锚注复合围岩体的解析方法[J]. 岩土力学, 2023, 44(增刊): 206-220.
[3] 苟永平, 叶琼瑶, 韦立德, 司家琛, . 央达隧道掌子面前方边坡地表开裂研究[J]. 岩土力学, 2023, 44(增刊): 548-560.
[4] 孙闯, 兰思琦, 陶琦, 关喜彬, 韩希平, . 深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析[J]. 岩土力学, 2023, 44(9): 2471-2484.
[5] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[6] 李翔, 王靖童, 魏恒. 多失效模式下基于区间非概率的岩质隧道稳定可靠度分析[J]. 岩土力学, 2023, 44(8): 2409-2418.
[7] 徐华, 张瑜, 郭国和, 蔡敏, 李奕信, 陈壮, . 隧道地表高压旋喷加固的浆液渗透范围计算方法[J]. 岩土力学, 2023, 44(7): 2064-2072.
[8] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[9] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[10] 张小波, 张雕, 姚池, 杨建华, 蒋水华, 荣耀. 考虑微拱效应的隧道洞口段管棚合理间距确定方法及参数分析[J]. 岩土力学, 2023, 44(6): 1625-1635.
[11] 孙浩凯, 高阳, 朱光轩, 徐飞, 郑新雨, . 隧道掘进机滚刀破岩动态荷载理论模型及试验研究[J]. 岩土力学, 2023, 44(6): 1657-1670.
[12] 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810.
[13] 王祖贤, 施成华, 龚琛杰, 曹成勇, 彭铸, 孙影杰, . 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.
[14] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[15] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究[J]. 岩土力学, 2023, 44(5): 1512-1529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[5] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[6] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[7] 李兴高,刘维宁. 挡土结构上水-土压力分算的进一步探讨[J]. , 2009, 30(2): 419 -424 .
[8] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .
[9] 周春梅,章泽军,徐大杰,王生维,李先福. 古构造应力场数值模拟及危险性预测研究[J]. , 2009, 30(7): 2141 -2146 .
[10] 孙长帅,杨海巍,徐光黎. 岩石锚杆基础抗拔承载力计算方法探究[J]. , 2009, 30(S1): 75 -78 .