岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 552-562.doi: 10.16285/j.rsm.2023.0312

• 岩土工程研究 • 上一篇    下一篇

基于极限平衡法的危岩倾覆稳定性三维计算方法

彭海游1, 2, 3,谢强1,陈柏林1, 2, 3,檀康2, 3,王琦2, 3,杨文君2   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 重庆地质矿产研究院 自然资源部地质灾害自动化监测技术创新中心,重庆 401120; 3. 重庆地质矿产研究院 重庆市地质灾害自动化监测工程技术研究中心,重庆 401120
  • 收稿日期:2023-03-13 接受日期:2023-06-07 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 谢强,男,1975年生,博士,教授,博士生导师,主要从事岩石损伤机制及地质灾害防治方面的研究。E-mail:xieqiang2000@163.com
  • 作者简介:彭海游,男,1986年生,博士,高级工程师,主要从事地质灾害防治方面的研究。penghaiyou@yeah.net
  • 基金资助:
    重庆市自然科学基金(No. CSTB2022NSCQ-MSX1466);重庆市地质灾害防治中心科技项目(No. KJ2021050)

Three-dimensional calculation method for stability against overturning of overhanging rock based on limit equilibrium method

PENG Hai-you1, 2, 3, XIE Qiang1, CHEN Bo-lin1, 2, 3, TAN Kang2, 3, WANG Qi2, 3, YANG Wen-jun2   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Technology Innovation Center of Geohazards Automatic Monitoring, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China; 3. Chongqing Engineering Research Center of Automatic Monitoring for Geological Hazards, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
  • Received:2023-03-13 Accepted:2023-06-07 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX1466) and the Science and Technology Project of Chongqing Geological Disaster Prevention Center (KJ2021050).

摘要: 目前危岩防治工作中,危岩稳定性评价主要以简化后的二维剖面作为计算模型。由于自然界中的危岩形态极不规则,采用二维剖面计算模型并不能真实反映危岩受力情况。为了研究危岩稳定性三维计算方法,在前人研究基础上,基于极限平衡理论,提出了由后缘裂缝抗拉强度控制的危岩倾覆稳定性三维计算公式,采用数值积分和空间几何方法给出了在危岩单体三维模型基础上求解危岩后缘岩体抗拉力、水压力及其力矩计算公式和实现流程。以三峡库区瞿塘峡吊嘴危岩为实例开展了应用,并通过数值分析进行了验证。通过不同形态危岩的三维稳定性分析,讨论了三维与二维稳定性计算结果的关系,对比发现危岩形态对稳定性计算结果有明显影响,三维计算较二维计算更准确和实用。

关键词: 危岩, 倾覆稳定性, 三维, 极限平衡法

Abstract: In the field of overhanging rock prevention and control, the stability calculations have traditionally used simplified two-dimensional profiles as the calculation model. However, the irregular shape of overhanging rocks in nature cannot be accurately represented by this simplified model, leading to limitations in stress analysis. To address this, a three-dimensional calculation method for overhanging rock stability was developed based on limit equilibrium theory and previous research. The proposed method focuses on the stability against overturning of overhanging rocks controlled by the tensile strength of the trailing edge crack. A three-dimensional calculation formula was derived, taking into account the tension resistance, water pressure, and moment of the trailing edge rock. The formula was implemented using numerical integration and spatial geometry methods, providing a comprehensive approach to analyzing the stability of overhanging rock. To validate the proposed method, an application was conducted using the Diaozui overhanging rock in the Qutangxia area of the Three Gorges Reservoir. Numerical analysis was performed to verify the results. By analyzing the stability of different forms of overhanging rock in three dimensions, the relationship between the three-dimensional stability calculation results and the traditional two-dimensional stability analysis was explored. The findings revealed that the shape of overhanging rock significantly impacts the stability calculation results. It was concluded that three-dimensional calculations provide more accurate and practical results compared to the traditional two-dimensional approach.

Key words: overhanging rock, stability against overturning, three-dimensional, limit equilibrium method

中图分类号: 

  • TU 443
[1] 刘新荣, 王浩, 郭雪岩, 罗新飏, 周小涵, 许彬, . 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究[J]. 岩土力学, 2024, 45(2): 563-576.
[2] 王锦山, 彭华, . 渤海海峡跨海通道工程区海域三维地应力测试[J]. 岩土力学, 2024, 45(1): 245-256.
[3] 顾岩, 雍睿, 沈伟, 杜时贵, 简杰东, 刘松林, . 基于轮廓曲线的岩体结构面三维粗糙度获取方法[J]. 岩土力学, 2023, 44(S1): 485-494.
[4] 孙闯, 兰思琦, 陶琦, 关喜彬, 韩希平, . 深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析[J]. 岩土力学, 2023, 44(9): 2471-2484.
[5] 周建, 尚肖楠, 刘福深, 沈君逸, 廖星川, . 利用近场动力学方法模拟隧道掘进机滚刀三维贯入破岩[J]. 岩土力学, 2023, 44(9): 2732-2743.
[6] 刘东东, 魏立新, 徐国元, 项彦勇, . 基于裂隙连续方法的三维裂隙岩体渗流传热数值模拟[J]. 岩土力学, 2023, 44(7): 2143-2150.
[7] 甘磊, 刘玉, 张宗亮, 沈振中, 马洪影, . 岩体裂隙粗糙度表征及其对裂隙渗流特性的影响[J]. 岩土力学, 2023, 44(6): 1585-1592.
[8] 马国良, 陈曦, 范超男, 葛少成. 不同水力荷载路径下煤体微观渗流特征及宏观破坏研究[J]. 岩土力学, 2023, 44(6): 1779-1788.
[9] 江权, 吴思, 刘强, 辛杰, 郑虹, . 水泥基3D打印材料基础配合比试验与质量评价[J]. 岩土力学, 2023, 44(5): 1245-1259.
[10] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. 砂土地层圆形深基坑三维分析与测斜仪测量[J]. 岩土力学, 2023, 44(4): 1142-1152.
[11] 刘新荣, 郭雪岩, 许彬, 周小涵, 曾夕, 谢应坤, 王䶮, . 含消落带劣化岩体的危岩边坡动力累积损伤机制研究[J]. 岩土力学, 2023, 44(3): 637-648.
[12] 杨焕强, 刘杨, 张晴晴, 熊冬, . 考虑页岩层理剪切滑移的水力裂缝几何参数计算方法[J]. 岩土力学, 2023, 44(2): 461-472.
[13] 应宏伟, 熊一帆, 沈华伟, 魏锋, 李冰河, 吕唯, . 考虑圆孔不均匀收敛和空间效应的基坑坑外土体水平位移场分析[J]. 岩土力学, 2023, 44(12): 3565-3576.
[14] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 强降雨影响下盾构隧道开挖面稳定性的三维对数螺旋模型上限解[J]. 岩土力学, 2023, 44(12): 3587-3601.
[15] 马登辉, 韩迅, 关云飞, 唐译, . 珊瑚颗粒孔隙结构及渗流特性分析[J]. 岩土力学, 2022, 43(S2): 223-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[4] 杜佐龙,黄茂松,李 早. 基于地层损失比的隧道开挖对临近群桩影响的DCM方法[J]. , 2009, 30(10): 3043 -3047 .
[5] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[6] 杨 坤,周创兵,王同旭. 多种外界随机荷载综合作用下的坝坡风险评价[J]. , 2009, 30(10): 3057 -3062 .
[7] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[8] 钟佳玉,郑永来,倪 寅. 波浪作用下砂质海床孔隙水压力的响应规律实验研究[J]. , 2009, 30(10): 3188 -3193 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .