岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 539-551.doi: 10.16285/j.rsm.2023.0296

• 岩土工程研究 • 上一篇    下一篇

基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测

潘秋景1,吴洪涛1,张子龙1,宋克志2   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 鲁东大学 土木工程学院,山东 烟台 264025
  • 收稿日期:2023-03-09 接受日期:2023-10-07 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 宋克志,男,1970年生,博士,教授,博士生导师,主要从事隧道与地下工程的教学与科研工作。E-mail:ytytskz@126.com
  • 作者简介:潘秋景,男,1987年生,博士,教授,博士生导师,主要从事盾构隧道掘进力学与智能决策的研究。qiujing.pan@csu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 51978322, No. 52108388, No. 52378424);湖南省科技创新计划(No. 2021RC3015);湖南省自然科学基金青年科学基金(No. 2022JJ40611)。

Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics-informed neural network

PAN Qiu-jing1, WU Hong-tao1, ZHANG Zi-long1, SONG Ke-zhi2   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. School of Civil Engineering, Ludong University, Yantai, Shandong 264025, China
  • Received:2023-03-09 Accepted:2023-10-07 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978322, 52108388, 52378424), the Science and Technology Innovation Program of Hunan Province (2021RC3015) and the Natural Science Foundation of Hunan Province (2022JJ40611).

摘要: 复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。

关键词: 物理信息神经网络(PINN), 盾构隧道, 地表沉降, 机器学习, 数据物理驱动

Abstract: Accurate prediction of tunneling-induced ground surface settlement is crucial for ensuring safe construction and decision-making in tunneling projects. In this study, a physics-informed neural network (PINN) model is established for predicting shield tunneling-induced stratum deformation. This model is constructed by incorporating the relationship between tunnel convergence deformation and tunneling position into a deep neural network (DNN) framework. Considering the geological characteristics of multiple strata, a multi-physics-informed neural network (MPINN) model is proposed to represent the physical information of different strata in a unified framework. The results show that the MPINN model can highly reproduce the results by the finite difference method, and can accurately predict the tunneling-induced ground surface settlements considering the complex geological information of the composite strata. Due to the integrated physical mechanism, the MPINN model is applicable to the problem of tunnel-induced ground surface settlement, and it can be employed to predict the tunneling-induced ground surface settlement under different geological and geometric conditions. Based on the measured data, the proposed MPINN model accurately predicts the ground surface settlement curve of the monitored cross-section, thus it can provide a reference for the prediction and early warning of ground surface settlement during tunneling process.

Key words: physics-informed neural network (PINN), shield tunnel, ground surface settlement, machine learning, data-driven and physics-informed model

中图分类号: 

  • U 25
[1] 吴爽爽, 胡新丽, 孙少锐, 魏继红, . 间歇式滑坡变形力学机制与单体预警案例研究[J]. 岩土力学, 2023, 44(S1): 593-602.
[2] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[3] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[4] 董学超, 郭明伟, 王水林, . 基于LightGBM的超大沉井下沉状态预测及传感器优化布置[J]. 岩土力学, 2023, 44(6): 1789-1799.
[5] 王祖贤, 施成华, 龚琛杰, 曹成勇, 彭铸, 孙影杰, . 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.
[6] 刘勇, 周怡晟, 索晓明, 樊浩博, 曹毅泽, 杜志田, . 盾构下穿高铁路基变形规律模型试验研究[J]. 岩土力学, 2023, 44(4): 941-951.
[7] 张亮亮, 程桦, 姚直书, 王晓健, . 基于改进Knothe时间模型的地表最大沉降速度预测[J]. 岩土力学, 2023, 44(4): 1111-1119.
[8] 吴宏, 叶治, 张宇亭, 刘华北, . 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216.
[9] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 强降雨影响下盾构隧道开挖面稳定性的三维对数螺旋模型上限解[J]. 岩土力学, 2023, 44(12): 3587-3601.
[10] 张东明, 周烨璐, 黄宏伟, 张晋彰, . 物理信息双驱动的长距离盾构隧道结构纵向力学性态智能诊断方法[J]. 岩土力学, 2023, 44(10): 2997-3010.
[11] 张志伟, 梁荣柱, 李忠超, 孙廉威, 沈雯, 吴文兵, . 盾尾非对称推力作用下盾构隧道纵向变形分析[J]. 岩土力学, 2023, 44(1): 88-98.
[12] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[13] 王祖贤, 施成华, 龚琛杰, 曹成勇, 刘建文, 彭铸, . 邻近车站(工作井)基坑开挖对下卧 盾构隧道影响的解析计算方法[J]. 岩土力学, 2022, 43(8): 2176-2190.
[14] 杨建平, 王琛, 黄煜诚, 秦川, 陈卫忠, . 水下盾构隧道运营期管片应变增量变化规律研究[J]. 岩土力学, 2022, 43(8): 2253-2262.
[15] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .