›› 2017, Vol. 38 ›› Issue (12): 3688-3697.doi: 10.16285/j.rsm.2017.12.037

• Numerical Analysis • Previous Articles     Next Articles

Influence of cracks on surrounding rock damage-failure mode of straight wall arch tunnel

ZHOU Lei, ZHU Zhe-ming, LIU Bang   

  1. Key Laboratory of Energy Engineering Safety and Disaster Mechanics of Ministry of Education, School of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2015-12-14 Online:2017-12-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (11672194, 11702181) and the Foundation of Sichuan Administration of Work Safety (aj20170515161307).

Abstract: The effect of cracks on the stability of surrounding rock of the straight wall arched tunnel was simulated by using different types of finite element analysis software (RFPA2D and ABAQUS). Cracks were normally distributed in the arch bottom, sidewall, arch shoulder, roof and other parts of the tunnel. This study investigated the mechanisms of crack initiation and propagation and the damage-failure patterns of surrounding rock under the confining pressure. The detailed comparisons and discussions of these two finite element methods (FEM) were presented. The model tests using cement mortar were conducted to validate the results obtained by numerical simulations. There was a good agreement between experimental results and numerical simulations. The results showed that cracks at the corner were the weak position of surrounding rock in the tunnel. When the crack at the arc of the tunnel roof formed 45°angle with the arc centre of the tunnel roof, the compressive strength of the tunnel was the lowest and the stability was the worst. Under the confining pressure, tensile failure mainly occurred at the arch bottom and the roof, and shear failure was observed at the sidewall and the crack tip.

Key words: crack, numerical simulation, rock failure process analysis, tunnel

CLC Number: 

  • TU 45

[1] XU Ri-qing, CHENG Kang, YING Hong-wei, LIN Cun-gang, LIANG Rong-zhu, FENG Su-yang, . Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect [J]. Rock and Soil Mechanics, 2020, 41(S1): 195-207.
[2] ZHENG Gang, LI Qing-han, CHENG Xue-song, HA Da, ZHAO Yue-bin. Theory and design of fast decompression and recharge of confined layer applied in tunnel emergency rescue [J]. Rock and Soil Mechanics, 2020, 41(S1): 208-216.
[3] XUE Ya-dong, ZHOU Jie, ZHAO Feng, LI Xing. Rock breaking mechanism of TBM cutter based on MatDEM [J]. Rock and Soil Mechanics, 2020, 41(S1): 337-346.
[4] ZHU Cai-hui, LAN Kai-jiang, DUAN Yu, HE Hong. The control technology of air shaft cross passage construction in Xi’an subway with "tunnel first then well" method [J]. Rock and Soil Mechanics, 2020, 41(S1): 379-386.
[5] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[6] YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin. Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2453-2460.
[7] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[8] BAI Xue-yuan, WANG Xue-bin, SHU Qin, . Continuum-discontinuum simulation of effects of internal friction angle on local fracture of circular cavern surrounding rock under hydrostatic pressure [J]. Rock and Soil Mechanics, 2020, 41(7): 2485-2493.
[9] FANG Yu-wei, WU Zhen-jun, SHENG Qian, TANG Hua, LIANG Dong-cai, . Intelligent recognition of tunnel stratum based on advanced drilling tests [J]. Rock and Soil Mechanics, 2020, 41(7): 2494-2503.
[10] CHEN Jian-gong, YANG Yang, CHEN Yan-han, CHEN Xiao-bing. Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength [J]. Rock and Soil Mechanics, 2020, 41(6): 1829-1835.
[11] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[12] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[13] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[14] ZHENG Li-fu, GAO Yong-tao, ZHOU Yu, TIAN Shu-guang, . Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method [J]. Rock and Soil Mechanics, 2020, 41(6): 2110-2121.
[15] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!