Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 647-658.doi: 10.16285/j.rsm.2023.1110

• Fundamental Theroy and Experimental Research •     Next Articles

Experimental study on in-situ water infiltration response characteristics of slightly-expansive mudstone foundation

YU Yun-yan, DING Xiao-gang, MA Li-na, CUI Wen-hao, DU Qian-zhong   

  1. College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • Received:2023-07-26 Accepted:2023-10-06 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the Education Department of Gansu Province: Industrial Support Plan Project (2021CYZC-28), the Science and Technology Project of Gansu Province (21YF5GA050) and the Gansu Provincial Natural Science Foundation (23JRRA854).

Abstract: The red bedded mudstone, known for its expansive and water-sensitive nature, poses a long-term potential threat to the construction and post-construction deformation control of regional highways and high-speed railroads. In this study, an in-situ water infiltration response characteristics test was conducted on slightly-expansive mudstone foundations using a red mudstone road cut in Lanzhou, Gansu Province. The test aimed to analyze the spatial and temporal evolution of swelling deformation volume, swelling force, and volumetric water content of the mudstone foundations, as well as to compare the differences between laboratory tests and in-situ tests. The results reveal that the water infiltration forms in the red mudstone foundation include fissure flow and pore flow. The distribution of water in the rock mass exhibits significant spatial and temporal heterogeneity, with rock mass fissures promoting seepage and expansion. During the infiltration process, the water absorption and expansion of the mudstone exhibit significant time dependence. The expansion amount and expansion force of the in-situ foundation experience stages of rapid increase, slow growth, and eventually fail to converge. After reaching the infiltration peak, the surface of the mudstone gradually softens or even turns into mud, leading to a decrease in the bearing capacity of foundation. Additionally, through the analysis of macroscopic expansion time history variation characteristics and microscopic pore structure distribution laws of indoor and in-situ mudstone, it is found that laboratory tests provide limited characterization of the water infiltration response characteristics of in-situ soil.

Key words: rock mechanics, red mudstone, slightly-expansive, in-situ test, water infiltration

CLC Number: 

  • TU451
[1] ZHANG Pei-sen, XU Da-qiang, YAN Wei, ZHANG Xiao-le, DONG Yu-hang, ZHAO Ming, . Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling [J]. Rock and Soil Mechanics, 2024, 45(2): 325-339.
[2] LUO Guo-li, ZHANG Ke, QI Fei-fei, ZHU Hui, ZHANG Kai, LIU Xiang-hua, . Size effect and anisotropy of mechanical properties of fractured rock masses based on 3D printing [J]. Rock and Soil Mechanics, 2023, 44(S1): 107-116.
[3] ZHU Jian-min, ZHENG Jian-guo, YU Yong-tang, CAI Jing, XIA Hui, . Development and engineering application of a new electronically controlled borehole shear instrument [J]. Rock and Soil Mechanics, 2023, 44(S1): 687-697.
[4] LIU Shang, LIU Ri-cheng, LI Shu-chen, YU Li-yuan, HU Ming-hui. Experimental study on evolution of normal stiffness of granite joints treated by chemical corrosion [J]. Rock and Soil Mechanics, 2023, 44(9): 2509-2524.
[5] XIN Zi-peng, CHAI Zhao-yun, SUN Hao-cheng, LI Tian-yu, LIU Xin-yu, DUAN Bi-ying. Post-peak fracture-bearing characteristics and fragmentation distribution of sandy mudstone [J]. Rock and Soil Mechanics, 2023, 44(8): 2369-2380.
[6] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[7] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[8] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[9] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[10] LI Bo, TANG Meng-xiong, HU He-song, LIU Chun-lin, LING Zao, SU Ding-li, HOU Zhen-kun. Experimental study on unloading and grouting effects of DPC pipe piles [J]. Rock and Soil Mechanics, 2023, 44(4): 1044-1052.
[11] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
[12] XIAO Wei-min, LIN Xin, ZHONG Jian-min, LI Shuang, ZHU Zhan-yuan, . Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation [J]. Rock and Soil Mechanics, 2023, 44(10): 2798-2808.
[13] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[14] ZHANG Tao, XU Wei-ya, MENG Qing-xiang, WANG Huan-ling, YAN Long, QIAN Kun, . Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology [J]. Rock and Soil Mechanics, 2022, 43(S2): 245-254.
[15] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .