›› 2018, Vol. 39 ›› Issue (8): 2886-2894.doi: 10.16285/j.rsm.2016.2545
冯上鑫,柴军瑞,许增光,覃 源,陈 玺
FENG Shang-xin, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xi
摘要: 为研究土石混合体在渗流作用下细观结构的变化。选取土石比例为7:3的重塑土石混合体试样进行室内渗流试验,采用核磁共振(NMR)实时监测试样在不同水力坡降和不同时间段下的细观结构信息,如孔隙分布和自由水孔隙等。结果表明:(1)渗透压力变化导致土石混合体孔隙分布发生改变,促使孔隙扩大及孔隙连通性变好,并破坏土石混合体结构特性等;(2)随着水力坡降和时间的增加,自由水孔隙、总孔隙及NMR渗透率均有不同程度增长,NMR渗透率增长速率持续升高,且自由水孔隙在对NMR渗透率贡献上大于束缚水孔隙;(3)低水力坡降下土石混合体孔隙分布曲线的不均匀系数Kua和曲率系数Kca系数变化较小,土石混合体侵蚀程度小,渗透破坏程度低。高水力坡降下Kua和Kca系数变化明显,土石混合体侵蚀程度较高,土石混合体形成渗流通道并发生渗透破坏。
中图分类号:
TU 458
[1] | 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40. |
[2] | 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202. |
[3] | 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286. |
[4] | 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960. |
[5] | 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10. |
[6] | 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396. |
[7] | 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464. |
[8] | 李杰林, 朱龙胤, 周科平, 刘汉文, 曹善鹏, . 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532. |
[9] | 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246. |
[10] | 周 辉, 郑 俊, 胡大伟, 张传庆, 卢景景, 高 阳, 张旺, . 碳酸性水环境下隧洞衬砌结构劣化机制研究[J]. 岩土力学, 2019, 40(7): 2469-2477. |
[11] | 王士权, 魏明俐, 何星星, 张亭亭, 薛 强, . 基于核磁共振技术的淤泥固化水分转化机制研究[J]. 岩土力学, 2019, 40(5): 1778-1786. |
[12] | 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602. |
[13] | 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970. |
[14] | 江强强, 刘路路, 焦玉勇, 王 浩, . 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012. |
[15] | 谢凯楠, 姜德义, 孙中光, 宋中强, 王静怡, 杨 涛, 蒋 翔, . 基于低场核磁共振的干湿循环对泥质砂岩 微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653-659. |
|