岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 1829-1835.doi: 10.16285/j.rsm.2019.1078

• 基础理论与实验研究 • 上一篇    下一篇

考虑抗拉强度的黏性填土挡土墙主动土压力计算

陈建功1, 2, 3,杨扬1,陈彦含1,陈小兵1   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 重庆大学 库区环境地质灾害防治国家地方联合工程研究中心,重庆 400045; 3. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045
  • 收稿日期:2019-06-18 修回日期:2019-11-26 出版日期:2020-06-11 发布日期:2020-07-31
  • 作者简介:陈建功,男,1967年生,博士,教授,主要从事岩土工程等方面的教学和科研工作
  • 基金资助:
    国家自然科学基金重点项目(No.51638002)

Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength

CHEN Jian-gong1, 2, 3, YANG Yang1, CHEN Yan-han1, CHEN Xiao-bing1   

  1. 1. Department of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Area, Chongqing University, Chongqing 400045, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2019-06-18 Revised:2019-11-26 Online:2020-06-11 Published:2020-07-31
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China(51638002).

摘要: 挡土墙后黏性土处于主动土压力状态时,墙顶一定深度范围内会产生裂缝,使其较大范围形成零压力区即开裂深度,关于开裂深度问题一直没有得到很好解决。针对变分法求解黏性填土主动土压力中未考虑裂缝的情况,通过一个算例说明了黏性填土表面在主动土压力状态下会产生裂缝。采用折线简化摩尔?库仑强度包络线,利用实际的土体抗拉强度推导了墙背土体开裂深度的计算公式。根据滑裂面上端点的应力边界状态和几何边界条件,对土压力变分计算方法进行了改进,使主动土压力的不确定问题变成了确定性问题。分析了填土内摩擦角、黏聚力、抗拉强度对开裂深度的影响,结果表明,随着内摩擦角和内聚力的增大,土体开裂深度逐渐增加,滑裂面向墙背方法偏移,土压力减小;随着土体抗拉强度的增加,开裂深度逐渐减小,土压力减小,当抗拉强度大到足以抵抗土体的开裂破坏,墙后土体开裂深度为0,这时土压力不再受抗拉强度的影响。

关键词: 挡土墙, 主动土压力, 变分法, 开裂深度, 黏性土

Abstract: When cohesive soil behind a retaining wall is in active earth pressure state, cracks will appear behind the top of the retaining wall, which leads to a wide region of zero pressure, namely cracking depth. The problem of the cracking depth behind a retaining wall has not been solved well. In this study, an example is taken to illustrate that cracks can appear on the surface of filling, because the cracks are not taken into account in the variational method that is used to solve the active soil pressure of cohesive soil behind the retaining wall. The Mohr-Coulomb strength envelope is simplified by a broken line and the calculation formula of the cracking depth of the soil behind the wall is derived by the actual soil tensile strength. According to the stress boundary state and geometric boundary conditions of the upper points on the slip surface, the variational method to calculate the active earth pressure variation has been improved, and the uncertainly model of the active earth pressure is transformed into a deterministic issue. Also, the influence of internal friction angle, cohesion and tensile strength on the crack depth is analyzed. With the increase of internal friction angle and cohesion, the crack depth of soil increases and the soil pressure gradually decreases, and the slip surface shifts towards the wall back. With the increase of the tensile strength of the soil, the cracking depth and the soil pressure both gradually decrease. When the tensile strength is strong enough to resist the tension destruction of the soil, the cracking depth of the soil behind the wall becomes zero, and the soil pressure is no longer affected by the tensile strength.

Key words: retaining wall, active earth pressure, variational method, cracking depth, cohesive soil

中图分类号: 

  • TU432
[1] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[2] 郑俊杰, 邵安迪, 谢明星, 景丹, . 不同填土宽度下设置EPS垫层挡土墙试验研究[J]. 岩土力学, 2021, 42(2): 324-332.
[3] 李纪伟, 林法力, 韦昌富, 汪华斌, 陈盼, 朱赞成, 刘子振, . 非饱和土中水平入渗方程显式求解[J]. 岩土力学, 2021, 42(1): 203-210.
[4] 王龙, 朱俊高, 郭万里, 陆阳洋, . 无黏性土压缩模型及其验证[J]. 岩土力学, 2020, 41(1): 229-234.
[5] 陈建功, 李 会, 贺自勇, . 基于变分法的均质土坡稳定性分析[J]. 岩土力学, 2019, 40(8): 2931-2937.
[6] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[7] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[8] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[9] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[10] 张晓曦, 何思明, 樊晓一, . L型挡土墙滑裂面确定方法与地震稳定性分析[J]. 岩土力学, 2019, 40(10): 4011-4020.
[11] 刘美麟,侯艳娟,张顶立,房 倩. 砂土地层中考虑基坑施工效应的柔性挡墙主动土压力研究[J]. , 2018, 39(S1): 149-158.
[12] 李兆华,胡 杰,冯吉利,龚文俊. 基于黏弹塑性本构模型的泥石流数值模拟[J]. , 2018, 39(S1): 513-520.
[13] 杨山奇,卢坤林,史克宝,赵瀚天,陈一鸣,. 刚性挡土墙后三维被动滑裂面的模型试验[J]. , 2018, 39(9): 3303-3312.
[14] 王学滨,张 楠,潘一山,张博闻,杜亚志,. 单轴压缩黏性土剪切带相互作用及损伤试验研究[J]. , 2018, 39(4): 1168-1175.
[15] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[3] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[4] 王 丽,郑 刚. 局部倾斜桩竖向承载力的有限元研究[J]. , 2009, 30(11): 3533 -3538 .
[5] 付宏渊,吴胜军,王桂尧. 荷载作用引起砂土渗透性变化的试验研究[J]. , 2009, 30(12): 3677 -3681 .
[6] 毛昶熙,段祥宝,吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. , 2009, 30(12): 3705 -3709 .
[7] 苗强强,张 磊,陈正汉,黄雪峰. 非饱和含黏砂土的广义土-水特征曲线试验研究[J]. , 2010, 31(1): 102 -106 .
[8] 赵理政,姜洪涛,唐朝生,施 斌. 超微粒子水泥加固软土试验研究[J]. , 2010, 31(1): 118 -122 .
[9] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .
[10] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .