岩土力学 ›› 2020, Vol. 41 ›› Issue (12): 3929-3938.doi: 10.16285/j.rsm.2020.0391

• 基础理论与实验研究 • 上一篇    下一篇

疏浚淤泥化学絮凝−真空预压深度脱水效果评价

王东星1, 2,唐弈锴1,伍林峰1   

  1. 1. 武汉大学 土木建筑工程学院 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072; 2. 武汉大学 水工岩石力学教育部重点实验室,湖北 武汉 430072
  • 收稿日期:2020-04-04 修回日期:2020-05-17 出版日期:2020-12-11 发布日期:2021-01-18
  • 作者简介:王东星,男,1984年生,博士(后),副教授,博士生导师,主要从事淤/污泥固化和软基处理等环境岩土工程教学和科研工作。
  • 基金资助:
    国家自然科学基金(No.51879202,No.52079098)

Evaluation on deep dewatering performance of dredged sludge treated by chemical flocculation-vacuum preloading

WANG Dong-xing1, 2, TANG Yi-kai1, WU Lin-feng1   

  1. 1. Hubei Key Laboratory of Safety for Geotechnical and Structural Engineering, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2020-04-04 Revised:2020-05-17 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51879202, 52079098).

摘要: 为实现疏浚淤泥高效快速脱水减容,选取化学絮凝和真空预压相结合的脱水技术,利用自制真空预压抽滤装置对5种类型絮凝剂调理淤泥进行系列室内脱水试验,通过上清液高度、泥水分界面高度、沉降速率、底泥含水率等指标,综合评价疏浚淤泥沉降过程与深度脱水效果。结果表明:5种絮凝剂对应最优添加量分别为Ca(OH)2(1 500 mg/L)、PAFSI(200 mg/L)、PAC(200 mg/L)、HCA(50 mg/L)、APAM(500 mg/L);与原始淤泥自然沉降过程相比(底泥高度17.14 cm、含水率96.8%),真空预压可实现絮凝调理淤泥脱水减容、底泥平均含水率降至53.5%,使底泥体积进一步压缩20.48%~36.99%;真空预压作用下,絮凝调理淤泥在50 min内达到沉降速率峰值,前120 min内淤泥絮凝效果明显、泥水分离程度占据主导;与原始淤泥真空预压对比,絮凝?真空预压大幅提升淤泥沉降速率、有效缩短峰值对应沉降时间,最优絮凝剂(APAM)底泥沉降速率峰值、淤泥总高度沉降速率峰值对应时间点缩短87.5%和83.33%,峰值速率分别增加3.56倍、5.18倍;添加适量絮凝剂能有效改善淤泥脱水性能,增大泥粒尺寸、防堵促排,加速疏浚淤泥沉降与泥水分离效率。化学絮凝?真空抽滤技术有利于实现疏浚淤泥减量化,显著缩短工期、加快施工进度、减少堆积占地,具有显著的工程应用价值。

关键词: 淤泥, 絮凝剂, 真空预压, 泥水分离, 沉降速率, 底泥含水率

Abstract: The combined technology of chemical flocculation and vacuum preloading was proposed to achieve efficient and rapid dewatering of dredged sludge. Five representative flocculants were selected to facilitate the dewatering process using a self-made vacuum preloading filter device. The sedimentation and deep dewatering process of dredged sludge were comprehensively evaluated using a set of designed parameters, including supernatant height, mud-water interface height, settling rate and water content of bottom sludge. The experimental results indicate that the optimal amount of flocculants is 1 500 mg/L for Ca(OH)2, 200 mg/L for PAFSI, 200 mg/L for PAC, 50 mg/L for HCA and 500 mg/L for APAM, respectively. Compared with natural sedimentation process (17.14 cm in height and 96.8% of water content of bottom sludge), the effect of vacuum preloading can accelerate the consolidation and reduce effectively the sludge volume, i.e. the water content of bottom sludge decreases from 96.8% to 53.5% and the volume is compressed further by 20.48%?36.99%. The settling rate of sludge after vacuum preloading reaches its peak within 50 min, and the effect of flocculants associated with the mud-water separation degree plays a dominated role within 120 min. Compared with the original sludge subjected to vacuum preloading, the combination of flocculation-vacuum preloading significantly improves the settling rate of sludge and effectively shortens the required time to reach the peak settling rate. For the optimal flocculant (APAM), the time needed to reach the peak settling rate of bottom sludge and the peak settling rate calculated from total height of sludge are shortened by 87.5% and 83.33%, and the peak settling rate is increased by 3.56 and 5.18 times, respectively. The combined technology of chemical flocculation and vacuum preloading can effectively improve the dewatering performance of flocculated sludge, increase the particle size to prevent blockage, accelerate drainage, promote the sludge sedimentation and improve the mud-water separation efficiency. The combined technique of flocculation-vacuum preloading, contributing to decrease sludge volume, shorten construction period, speed up construction progress and reduce the floor area, can play an important role if it is applied to engineering practice.

Key words: sludge, flocculants, vacuum preloading, mud-water separation, settling rate, water content of bottom sludge

中图分类号: 

  • TU447
[1] 雷华阳, 王鹏, 刘旭, 王磊, . 基于气体运移规律的增压式真空预压法 加固机制分析[J]. 岩土力学, 2021, 42(4): 943-953.
[2] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[3] 王东星, 陈政光, . 氯氧镁水泥固化淤泥力学特性及微观机制[J]. 岩土力学, 2021, 42(1): 77-85.
[4] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[5] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[6] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学, 2020, 41(4): 1146-1152.
[7] 蔡袁强, 周岳富, 王鹏, 史吏, 王军, . 考虑淤堵效应的疏浚淤泥真空固结沉降计算[J]. 岩土力学, 2020, 41(11): 3705-3713.
[8] 詹良通, 张斌, 郭晓刚, 江文豪, . 废弃泥浆底部真空−上部堆载预压模型试验研究[J]. 岩土力学, 2020, 41(10): 3245-3254.
[9] 史吏, 胡东东, 蔡袁强, 潘晓东, 孙宏磊, . 增压式真空预压吹填淤泥孔压 实时响应及加固机制初探[J]. 岩土力学, 2020, 41(1): 185-193.
[10] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[11] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[12] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[13] 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114.
[14] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[15] 杨爱武, 潘亚轩, 曹 宇, 尚英杰, 吴可龙, . 吹填软土低位真空预压室内试验及其数值模拟[J]. 岩土力学, 2019, 40(2): 539-548.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 黄润秋,徐德敏. 岩石(体)渗透性测试的体变量法研究[J]. , 2009, 30(10): 2961 -2964 .
[5] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[6] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[7] 康厚荣, ,雷明堂,张谢东,赵杰华. 贵州省公路工程岩溶环境区划[J]. , 2009, 30(10): 3032 -3036 .
[8] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[9] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[10] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .