岩土力学 ›› 2021, Vol. 42 ›› Issue (3): 691-699.doi: 10.16285/j.rsm.2020.1143

• 基础理论与实验研究 • 上一篇    下一篇

考虑热渗效应的高温管道−饱和地基相互作用研究

叶智刚1, 2,王路君1, 3,朱斌1, 2, 3,黄家晟1, 2,徐文杰1, 2,陈云敏1, 2, 3   

  1. 1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2. 浙江大学 岩土工程研究所,浙江 杭州 310058; 3. 浙江大学 超重力研究中心,浙江 杭州 310058
  • 收稿日期:2020-08-05 修回日期:2020-12-28 出版日期:2021-03-11 发布日期:2021-03-15
  • 通讯作者: 王路君,男,1985年生,博士,副教授,主要从事能源岩土工程和海洋岩土工程方面的教学与研究工作。E-mail: lujunwang@zju.edu.cn E-mail:zhigangye@zju.edu.cn
  • 作者简介:叶智刚,男,1992年生,博士研究生,主要从事海洋岩土工程多相多场相互作用研究。
  • 基金资助:
    浙江省自然科学基金(No.LCD19E090001,No.LY21E080026);国家自然科学基金项目(No.52078458,No.51988101,No.51708494)。

Numerical study on heated pipe-saturated soil foundation interaction considering thermo-osmosis effect

YE Zhi-gang1, 2, WANG Lu-jun1, 3, ZHU Bin1, 2, 3, HUANG Jia-sheng1, 2, XU Wen-jie1, 2, CHEN Yun-min1, 2, 3   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2020-08-05 Revised:2020-12-28 Online:2021-03-11 Published:2021-03-15
  • Supported by:
    This work was supported by the Zhejiang Provincial Natural Science Foundation of China(LCD19E090001, LY21E080026) and the National Natural Science Foundation(52078458, 51988101, 51708494).

摘要: 高温管道运输是海洋油气输送最常采用的方式之一,其中高温管道?地基相互作用机制是热屈曲可控设计的关键。管道温度变化不仅引起周围海床地基强烈的热水力耦合作用,还诱发孔隙水在温度梯度下发生迁移,表现出显著的热渗效应。基于OpenGeoSys有限元分析平台对高温管道与考虑热渗效应的饱和地基相互作用问题进行研究。基于质量方程和能量方程,推导了热渗效应影响因子理论表达式并提出了临界影响因子,界定了常见土?水参数下热渗系数临界值;通过OpenGeoSys分析平台二次开发嵌入热渗效应,建立了高温管道?饱和土相互作用模型,能够考虑管?土间的水热耦合作用和土体的热渗效应。通过与解析理论对比验证了所建模型的有效性,随后基于热渗影响因子和数值分析,探讨了热渗效应对管?土相互作用的影响程度,并详细分析了不同输油温度、不同初始埋深管道在运行期管周海床孔压和竖向位移的发展。结果表明:土体临界热渗系数为4.3×10?12 m2/(s·K),为实际工程中是否考虑热渗效应提供了评估依据;热渗效应对土体孔压峰值影响甚微但会引起显著的稳态负孔压,提出的热渗效应影响因子确定了该负孔压幅值与峰值的比例关系;管道运行中温度往往诱发土体弱化和负孔压对管道稳定产生不利影响,并随输油温度、3 D埋深内的增加而加强(D为管道直径),3 D以上埋深热渗效应的影响差异不显著。

关键词: 高温管道, 饱和土, 热渗效应, 管?土相互作用, OpenGeoSys

Abstract: Heated pipe transportation is one of the most common used ways of offshore oil and gas transportation, and the mechanism of pipe-soil foundation interaction is the key to the controllable thermal buckling design of heated pipes. The change of pipe temperature not only causes the strong thermo-hydro-mechanical coupling response of the surrounding seabed saturated soil foundation, but also induces the migration of pore water under the temperature gradient, showing a significant thermo-osmosis effect. In this paper, a numerical study is presented to study the heated pipe-saturated soil foundation interaction considering thermo-osmosis (T-O) effect based on the OpenGeoSys finite element platform. Based on the mass equation and energy equation, the theoretical expression of the influence factors of thermo-osmosis effect was derived and the critical influence factors were proposed, which determined the critical values of T-O coefficient for some common soil and water parameters. Through the secondary development in OpenGeoSys embedding the T-O effect, a heated pipe-saturated soil interaction model, which can consider the thermo- hydro-mechanical coupling behavior and the T-O effect of soils surrounding the pipe, was established. The validity of the model was verified by comparing with the analytical results, and then the effect of T-O on the pipe-soil interaction was discussed based on the influence factors of T-O effect and numerical results, including the evolutions of pore water pressure and vertical displacement of seabed soils around the pipe with different oil transportation temperature and different initial buried depth during the operation period. Results showed that the critical value of the T-O coefficient is 4.3×10?12 m2/(s·K), which provides a basis for evaluating whether the T-O effect is considered in practical engineering. The T-O effect has little influence on the peak value of pore pressure of soil, but it can cause significant stable-state negative pore pressure. The proportional relationship between the amplitude and the peak value of the negative pore pressure is determined by the proposed influence factor of T-O effect. During pipeline operation, temperature often induces soil weakening and negative pore pressure, which have adverse effects on pipe stability. This adverse effect is enhanced with the increase of oil transportation temperature and depth within 3 D (D is the diameter of the pipe), but there is no significant difference in this adverse effect caused by T-O with depth above 3 D.

Key words: heated pipe, saturated soil, thermo-osmosis effect, pipe-soil interaction, OpenGeoSys

中图分类号: 

  • TU411
[1] 刘樟荣, 叶为民, 崔玉军, 朱合华, 王琼, 陈永贵, . 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549-1556.
[2] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[3] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[4] 巴振宁, 刘世朋, 吴孟桃, 梁建文, . 饱和土中周期排列管桩对平面SV波 隔振的解析求解[J]. 岩土力学, 2021, 42(3): 627-637.
[5] 宋朝阳, 赵成刚, 韦昌富, 马田田, . 非饱和土平均粒间应力的计算及应用[J]. 岩土力学, 2020, 41(8): 2665-2674.
[6] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[7] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[8] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[9] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[10] 孙德安, 薛垚, 汪磊, . 变荷载作用下考虑半透水边界热传导性的 一维饱和土热固结特性研究[J]. 岩土力学, 2020, 41(5): 1465-1473.
[11] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[12] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[13] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[14] 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
[15] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[5] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[6] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[7] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[8] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[9] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[10] 徐 冲,刘保国,刘开云,郭佳奇. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J]. , 2011, 32(6): 1669 -1675 .