岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3385-3396.doi: 10.16285/j.rsm.2021.0264

• 岩土工程研究 • 上一篇    下一篇

考虑空洞影响的盾构隧道地震易损性分析

陈誉升1,丁祖德1,资昊1,刘正初2,计霞飞1   

  1. 1. 昆明理工大学 建筑工程学院,云南 昆明 650500;2. 中铁二院昆明勘察设计研究院有限责任公司,云南 昆明 650200
  • 收稿日期:2021-02-19 修回日期:2021-07-19 出版日期:2021-12-13 发布日期:2021-12-14
  • 通讯作者: 丁祖德,男,1979年生,博士,教授,主要从事隧道与地下工程方面的教学研究工作。E-mail: dzdvsdt@163.com E-mail:1466687453@qq.com
  • 作者简介:陈誉升,男,1997年生,硕士研究生,主要从事隧道与地下工程方面的研究工作
  • 基金资助:
    国家自然科学基金(No.51768028)

Seismic vulnerability analysis of shield tunnels considering cavitation

CHEN Yu-sheng1, DING Zu-de1, ZI Hao1, LIU Zheng-chu2, JI Xia-fei1   

  1. 1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. Kunming Survey, Design and Research Institute Co., Ltd. of China Railway Second Institute, Kunming, Yunnan 650200, China
  • Received:2021-02-19 Revised:2021-07-19 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51768028).

摘要: 管片背后存在空洞是盾构隧道一种常见的病害现象,它不仅影响土层和管片的静力学行为,还会影响隧道的动力响应,加剧隧道地震破坏。现有的相关研究均采用确定性分析方法,缺少从概率角度的定量评价。以某轨道交通区间盾构隧道为例,考虑空洞位置和尺寸、场地条件以及地震波入射方向等因素,采用动力增量法,开展了基于土层?隧道?空洞相互作用的大量非线性动力时程分析。结合隧道地震易损性理论,研究存在空洞病害的盾构隧道地震易损性。结果表明:空洞尺寸、场地条件和地震动入射方向对隧道地震易损性有重要影响。随着空洞尺寸的增加,空洞及临近区域土体塑性变形成倍增大,管片截面偏心程度增加,承载性能减弱,受影响范围为空洞尺寸的3~5倍。管片背后空洞增大了隧道结构的易损性,空洞越大,易损性增幅越明显。空洞对结构易损性的影响因空洞部位不同而异,在较大尺寸空洞时,影响程度由大到小依次为:边墙、拱肩和拱顶空洞。场地条件越差,会增大隧道的易损性,空洞对易损性的影响也越大。横向和垂向地震动入射方向下,隧道易损性均随空洞尺寸的增加呈非线性增大,虽然垂向地震动下的损伤概率小于横向地震动,但增幅明显更大,受空洞尺寸的影响更为敏感。值得注意的是,针对3种空洞部位和两种地震动入射方向,较大的空洞尺寸都将显著影响结构的抗震性能。

关键词: 盾构隧道, 空洞, 场地条件, 地震波入射方向, 地震损伤, 易损性曲线

Abstract: The existence of cavities behind the segments is one of the common disease phenomena in shield tunnels. The cavities not only affect the static mechanics behavior of soil and segment, but also directly affect the dynamic response of the tunnel, which could aggravate the tunnel’s seismic damage. The existing related researches all use the deterministic analysis methods and lack the quantitative evaluation method in terms of probability perspective. Taking a shield tunnel in a rail transit section as an example, considering factors such as the location and size of the cavity, site conditions, and the incident direction of seismic wave, a large number of nonlinear dynamic time-history analyses are conducted based on the soil-tunnel-void interaction using an increment dynamic analysis method. Combined with the theory of tunnel seismic vulnerability, the seismic vulnerability is studied for the shield tunnel with the cavity disease. It is found that: the size of the cavity, the site conditions and the incidence direction of seismic wave have an important influence on the tunnel seismic vulnerability. As the cavity size increases, the plastic deformation of the soil adjacent to the cavity increases substantially, the eccentricity extent of the segment section increases, and the load-bearing performance decreases, and the affected area is about 3?5 times the cavity size. The cavity behind the segment increases the vulnerability of the tunnel structure. The increase of vulnerability is more obvious with the void size increasing. The impact of the cavity on the structure vulnerability varies with different locations of the cavity. When the cavity size is relatively large, the impact extent shows the following trend with a descending order: the side wall, shoulder, and crown cavity. As site condition worsens, the tunnel vulnerability increases and the influence of the void on tunnel vulnerability also enhance. Under the transverse and vertical incident directions of seismic ground motions, the tunnel vulnerability increases nonlinearly with the increasing of the cavity size. Although the damage probability under vertical ground motion is less than that of transverse ground motion, the increasing extent is significantly larger and more sensitive to the cavity size. It is worth to noting that for the three cavity locations and the two incident directions of ground motion, the larger cavity size may significantly affect the seismic performance of the tunnel structure.

Key words: shield tunnel, cavity, site conditions, incident direction of seismic wave, seismic damage, vulnerability curve

中图分类号: 

  • U451
[1] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[2] 戴轩, 郭旺, 程雪松, 霍海峰, 刘国光, . 盾构隧道平行侧穿诱发的建筑纵向沉降 实测与模拟分析[J]. 岩土力学, 2021, 42(1): 233-244.
[3] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[4] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[5] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[6] 雷勇, 邓加政, 刘泽宇, 李君杰, 邹根. 考虑荷载位置偏移的空洞岩石地基极限承载力 计算方法[J]. 岩土力学, 2020, 41(10): 3326-3331.
[7] 侯公羽, 李子祥, 胡涛, 周天赐, 肖海林, . 用于隧道变形监测的分布式光纤定点式布设 监测误差测定研究[J]. 岩土力学, 2020, 41(10): 3481-3490.
[8] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[9] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[10] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[11] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[12] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[13] 陈福全,赖丰文,李大勇. 受空洞坍塌影响的加筋路基研究综述[J]. , 2018, 39(9): 3362-3376.
[14] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[15] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .