岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1811-1825.doi: 10.16285/j.rsm.2022.0995

• 数值分析 • 上一篇    下一篇

砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究

胡伟1, 2,王辉1, 2,姚琛3,郝冬雪4,史旦达5   

  1. 1. 湖南科技大学 岩土工程稳定控制与健康监测省重点实验室,湖南 湘潭411201;2. 湖南科技大学 土木工程学院,湖南 湘潭 411201; 3. 中国中铁大桥勘测设计院集团有限公司重庆分公司,重庆 400020;4. 东北电力大学 建筑工程学院,吉林 吉林 132012; 5. 上海海事大学 海洋科学与工程学院,上海 201306
  • 收稿日期:2022-06-29 接受日期:2022-10-20 出版日期:2023-06-14 发布日期:2023-06-17
  • 作者简介:胡伟,男,1982年生,博士,教授,博士生导师,主要从事地基与基础工程方面的研究。
  • 基金资助:
    国家自然科学基金(No.52178332,No.52078108)

Three-dimensional unified mechanical model and calculation method of uplift capacity of horizontal rectangular anchor plate in the whole region in sand

HU Wei1, 2, WANG Hui1, 2, YAO Chen3, HAO Dong-xue4, SHI Dan-da5   

  1. 1. Hunan Province Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 2. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 3. China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd. Chongqing Branch, Chongqing 400020, China; 4. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, Jilin 132012, China; 5. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Received:2022-06-29 Accepted:2022-10-20 Online:2023-06-14 Published:2023-06-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178332, 52078108).

摘要: 水平矩形锚板竖向拉拔属于典型的三维问题,但极限状态下锚周土体滑动面形态受锚板长宽比、埋深比两个变量共同影响,表征难度大。结合ABAQUS软件三维数值模拟和二维滑动面分析结果,三维滑动面在其埋深范围内任一水平剖面上的几何形态可用4段分别与锚板长边、短边平行且相等的直线段以及4段1/4圆弧线组成的闭合图形描述;直线段与对应锚边的水平距离由长边中心竖向对称面内的滑动面决定,该二维滑动面形态仅取决于埋深比,可使用对数螺旋线形态函数进行表征。构建出了水平矩形锚板竖向拉拔承载三维力学分析模型,分析了该模型存在的4种工况。结合模型的分解与合并开展隔离体的力学极限平衡分析,推导建立了水平矩形锚板竖向拉拔承载力计算方法,该方法可在长宽比和埋深比全域范围内使用。通过与5个试验案例,3种计算方法的对比分析表明,新方法在各种密实状态砂土地基中均表现最好,具有很好的适用性。

关键词: 矩形锚板, 竖向拉拔, 滑动面, 力学模型, 承载力

Abstract: Uplift of the horizontal rectangular anchor plate is a typical three-dimensional problem. However, it is difficult to characterize the sliding surface of soil around the anchor plate in the limit state for its shape is affected by a combination of the length-width ratio and embedment ratio of the anchor plate. Combining the results of ABAQUS 3D numerical simulation and 2D sliding surface analysis, it is found that the geometric form of the 3D sliding surface in any horizontal section within its buried depth range can be described by a closed graph, including four segments of straight lines parallel and equal to the long and short sides of the anchor plate respectively and four segments of 1/4 arc. The horizontal distance between the straight line and the corresponding anchor edge is determined by the 2D sliding surface in the vertical symmetric plane in the center of the long edge. The shape of this 2D sliding surface depends only on the embedment ratio, and it can be characterized by the logarithmic spiral morphological function. Based on these understandings, a three-dimensional mechanical analysis model of uplift bearing capacity of the horizontal rectangular anchor plate was constructed for the first time, and four cases of the model were analyzed. Combining the decomposition and merging of the model, the mechanical limit equilibrium analysis of the isolation body was carried out. Then, the calculation method of uplift bearing capacity of the horizontal rectangular anchor plate was deduced. It is applicable in the whole range of the length-width ratio and embedment ratio. Compared with five test cases and three other calculation methods, the results show that the proposed method has the best performance in all kinds of sand ground with various relative densities, which shows good applicability.

Key words: rectangular anchor plate, vertical pullout, sliding surface, mechanical model, bearing capacity

中图分类号: 

  • TU441
[1] 何杰, 郭端伟, 宋德新, 刘孟鑫, 张磊, 文奇峰, . 循环荷载下楔形劲芯水泥土复合桩工作特性试验研究[J]. 岩土力学, 2023, 44(5): 1353-1362.
[2] 江杰, 付臣志, 柴文成, 欧孝夺, . 砂土地基中桩顶竖向-水平加载路径下柔性单桩水平承载力分析[J]. 岩土力学, 2023, 44(5): 1375-1384.
[3] 黄炜, 简文彬, 杨坚, 豆红强, 罗金妹, . 多支盘锚杆的原型试验与荷载传递特征分析[J]. 岩土力学, 2023, 44(2): 520-530.
[4] 钟紫蓝, 韩春堂, 李锦强, 赵鑫, 缪惠全. 浅埋管道水平横向作用下砂土极限承载力研究[J]. 岩土力学, 2022, 43(S2): 95-103.
[5] 张文莲, 孙晓云, 陈勇, 金申熠, . 基于岩体抗压强度折减的边坡稳定性分析方法[J]. 岩土力学, 2022, 43(S2): 607-615.
[6] 杨肖锋, 鲁祖德, 陈从新, 孙朝燚, 刘轩廷, . 板裂结构顺层岩质边坡滑移−弯曲破坏 机制的力学模型研究[J]. 岩土力学, 2022, 43(S1): 258-266.
[7] AHMAD Hussein, MAHBOUBI Ahmad, NOORZAD Ali, HOSEINI Mohammad Hosein, . 包裹式土工格栅−砂土相互作用对条形基础承载 力−沉降特性的影响研究[J]. 岩土力学, 2022, 43(9): 2550-2567.
[8] 宋二祥, 陈星屹, 林世杰. 关于偏心荷载下地基承载力的验算方法[J]. 岩土力学, 2022, 43(7): 1925-1932.
[9] 袁宇, 刘润, 付登锋, 孙国栋. 结构性海洋黏土损伤模型的二次开发及应用[J]. 岩土力学, 2022, 43(7): 1989-2002.
[10] 朱鸿鹄, 高宇新, 李元海, 倪钰菲, . 土工格栅加筋砂土中水平锚板抗拔特性试验研究[J]. 岩土力学, 2022, 43(5): 1207-1214.
[11] 焦钰祺, 贺林林, 梁越, 刘旭菲, . 考虑结构性黏土应变软化效应的 桩靴竖向承载特性研究[J]. 岩土力学, 2022, 43(5): 1374-1382.
[12] 汪嘉钰, 刘润, 姬永红, 杨旭, 陈广思, 王晓磊, . 筒型基础水平向和抗倾承载力的极限分析上限解[J]. 岩土力学, 2022, 43(3): 777-788.
[13] 周航, 余昊, 曾少华, . 饱和黏土中螺旋桩安装效应对抗拔承载力影响 的试验研究[J]. 岩土力学, 2022, 43(12): 3249-3258.
[14] 史旦达, 俞快, 毛逸瑶, 原媛, 郝冬雪, 胡伟, . 松砂中双叶片螺旋锚上拔承载 及土体变形特性试验研究[J]. 岩土力学, 2022, 43(11): 3059-3072.
[15] 屈春来, 付迪, 刘世伟, 冷先伦, 李建贺, 孙熇远. 非均质成层边坡极限承载力上限分析[J]. 岩土力学, 2022, 43(10): 2923-2932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .