岩土力学 ›› 2022, Vol. 43 ›› Issue (12): 3249-3258.doi: 10.16285/j.rsm.2022.0137

• 基础理论与实验研究 • 上一篇    下一篇

饱和黏土中螺旋桩安装效应对抗拔承载力影响 的试验研究

周航1, 2,余昊1, 2,曾少华1, 2   

  1. 1. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045;2. 重庆大学 土木工程学院,重庆 400045
  • 收稿日期:2022-02-07 修回日期:2022-03-18 出版日期:2022-12-28 发布日期:2023-01-02
  • 作者简介:周航,男,1987年生,博士,研究员,博士生导师,主要从事软土地基处理及桩基础方面的研究。
  • 基金资助:
    国家自然科学基金面上项目(No.52278330)

Experimental study of the installation effect of helical piles in saturated clay on uplift resistance

ZHOU Hang1, 2, YU Hao1, 2, ZENG Shao-hua1, 2   

  1. 1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 2. College of Civil Engineering, Chongqing University, Chongqing 400045, China
  • Received:2022-02-07 Revised:2022-03-18 Online:2022-12-28 Published:2023-01-02
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (52278330).

摘要: 螺旋桩,因其施工方便、安装后即可承载、又可回收利用等优势,近年来得到广泛的关注。然而之前的研究主要是基于不考虑螺旋桩安装效应的前提下开展的,当考虑安装效应时,研究又主要聚焦在对砂土密实度的扰动程度上,对于黏土中安装效应的试验研究有限。针对这一问题,开展室内模型槽试验,获得30组不同类型螺旋桩的荷载−位移关系。结果表明:对于单叶片桩,是否考虑安装效应两种情况,极限承载力随埋深比增大的变化趋势基本相同,但与不考虑安装效应相比,考虑安装效应时极限承载力降低幅度明显;对于双叶片桩,当叶片间距大于2D后,单独承载量破坏发生,各叶片可单独发挥承载能力;增加叶片数量可使得承载力得到适当提高,但当破坏模式由单独承载量破坏过渡到圆柱剪切破坏后,承载力增加不再显著,此时临界间距比(S/D)cr在1.5~2.0之间;随后提出“扰动系数”的概念对由于螺旋桩安装引起的承载力降低现象进行量化评价,对于单叶片桩,当埋深比大于4D后,扰动系数在0.5~0.6之间变化;增大叶片间距会使得扰动系数呈现增长趋势,范围在0.20~0.45之间;对于多叶片,扰动系数处于0.4~0.6之间。

关键词: 螺旋桩, 安装效应, 抗拔承载力, 模型试验

Abstract: Helical piles have received extensive attention in recent years due to its advantages such as convenient construction, load-bearing capacity after installation, and recyclability. However, the previous research was mainly based on the premise of ignoring the installation effect. When the installation effect was considered, researches mainly focused on the degree of disturbance to the relative density of sand. The experimental study of the installation effect in clay is not enough. In response to this problem, a model test was carried out to obtain the load-displacement relationship curves of different types of helical piles. For the helical pile with a single plate, whether the installation effect is considered or not, the variation trends of the ultimate bearing capacity with the increasing of the embedment depth ratio are basically the same, but the ultimate bearing capacity decreases significantly when installation effect is considered. For double-plate pile, after the spacing is greater than 2D, the individual bearing model occurs, and each plate can play its bearing capacity independently. Increasing the number of plates can appropriately improve the bearing capacity, but when the failure model transitions from individual bearing model to cylindrical shear mechanism, the increase of bearing capacity is no longer obvious, and at this moment the critical spacing ratio (S/D)cr is between 1.5 and 2.0. Subsequently, a concept of “disturbance coefficient” is put forward to quantitatively evaluate the reduction of bearing capacity caused by helical pile installation. For the helical pile with a single plate, the disturbance coefficient varies from 0.5 to 0.6 when embedment depth ratio is greater than 4D, and increasing the spacing ratio will lead to an increase in disturbance coefficient ranging from 0.20 to 0.45. For multiple plates, the coefficient lies between 0.4 and 0.6.

Key words: helical piles, installation effect, uplift resistance, model test

中图分类号: 

  • TU447
[1] 彭文哲, 赵明华, 杨超炜, 赵衡, . 斜坡桩水平循环特性模型试验及有限杆单元解[J]. 岩土力学, 2023, 44(2): 381-391.
[2] 周翔, 蔡静森, 马伟成, 肖皓文, . 物质组成特征对碎石土斜坡变形破坏影响研究[J]. 岩土力学, 2023, 44(2): 531-540.
[3] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[4] 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290.
[5] 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326.
[6] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[7] 单治钢, 高上, 孙淼军, 陈雨雪, 李利平, 成帅, 周宗青, . 波浪作用下近海滑坡机制模型试验与 数值模拟研究[J]. 岩土力学, 2022, 43(S2): 541-552.
[8] 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468.
[9] 王心博, 王路君, 朱斌, 王鹏, 袁思敏, 陈云敏, . 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370.
[10] 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382.
[11] 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456.
[12] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[13] 兰景岩, 蔡金豆, 吴连斌, 史庆旗, . 含隧道场地地震动放大效应的深度变化规律研究[J]. 岩土力学, 2022, 43(8): 2083-2091.
[14] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[15] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .